Skip to content

Powerful modern math library for PHP: Features descriptive statistics and regressions; Continuous and discrete probability distributions; Linear algebra with matrices and vectors, Numerical analysis; special mathematical functions; Algebra

License

Notifications You must be signed in to change notification settings

hoytluo/math-php

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Math PHP

Powerful Modern Math Library for PHP

Math PHP is the only library you need to integrate mathematical functions into your applications. It is a self-contained library in pure PHP with no external dependencies.

It is actively under development with development (0.y.z) releases.

Features

Setup

Add the library to your composer.json file in your project:

{
  "require": {
      "markrogoyski/math-php": "0.*"
  }
}

Use composer to install the library:

$ php composer.phar install

Composer will install Math PHP inside your vendor folder. Then you can add the following to your .php files to use the library with Autoloading.

require_once(__DIR__ . '/vendor/autoload.php');

Minimum Requirements

  • PHP 7

Usage

Algebra

use MathPHP\Algebra;

// Greatest common divisor (GCD)
$gcd = Algebra::gcd(8, 12);

// Extended greatest common divisor - gcd(a, b) = a*a' + b*b'
$gcd = Algebra::extendedGCD(12, 8); // returns array [gcd, a', b']

// Least common multiple (LCM)
$lcm = Algebra::lcm(5, 2);

// Factors of an integer
$factors = Algebra::factors(12); // returns [1, 2, 3, 4, 6, 12]

Functions - Map - Single Array

use MathPHP\Functions\Map\Single;

$x = [1, 2, 3, 4];

$sums        = Single::add($x, 2);      // [3, 4, 5, 6]
$differences = Single::subtract($x, 1); // [0, 1, 2, 3]
$products    = Single::multiply($x, 5); // [5, 10, 15, 20]
$quotients   = Single::divide($x, 2);   // [0.5, 1, 1.5, 2]
$          = Single::square($x);      // [1, 4, 9, 16]
$          = Single::cube($x);        // [1, 8, 27, 64]
$x⁴          = Single::pow($x, 4);      // [1, 16, 81, 256]
$√x          = Single::sqrt($x);        // [1, 1.414, 1.732, 2]
$∣x∣         = Single::abs($x);         // [1, 2, 3, 4]
$maxes       = Single::max($x, 3);      // [3, 3, 3, 4]
$mins        = Single::min($x, 3);      // [1, 2, 3, 3]

Functions - Map - Multiple Arrays

use MathPHP\Functions\Map\Multi;

$x = [10, 10, 10, 10];
$y = [1,   2,  5, 10];

// Map function against elements of two or more arrays, item by item (by item ...)
$sums        = Multi::add($x, $y);      // [11, 12, 15, 20]
$differences = Multi::subtract($x, $y); // [9, 8, 5, 0]
$products    = Multi::multiply($x, $y); // [10, 20, 50, 100]
$quotients   = Multi::divide($x, $y);   // [10, 5, 2, 1]
$maxes       = Multi::max($x, $y);      // [10, 10, 10, 10]
$mins        = Multi::mins($x, $y);     // [1, 2, 5, 10]

// All functions work on multiple arrays; not limited to just two
$x    = [10, 10, 10, 10];
$y    = [1,   2,  5, 10];
$z    = [4,   5,  6,  7];
$sums = Multi::add($x, $y, $z); // [15, 17, 21, 27]

Functions - Special Functions

use MathPHP\Functions\Special;

// Gamma function Γ(z)
$z = 4;
$Γ = Special::gamma($z);          // Uses gamma definition for integers and half integers; uses Lanczos approximation for real numbers
$Γ = Special::gammaLanczos($z);   // Lanczos approximation
$Γ = Special::gammaStirling($z);  // Stirling approximation

// Incomplete gamma functions - γ(s,t), Γ(s,x)
list($x, $s) = [1, 2];
$γ = Special::lowerIncompleteGamma($x, $s); // same as γ
$γ = Special::γ($x, $s);                    // same as lowerIncompleteGamma
$Γ = Special::upperIncompleteGamma($x, $s);

// Beta function
list($x, $y) = [1, 2];
$β = Special::beta($x, $y);

// Incomplete beta functions
list($x, $a, $b) = [0.4, 2, 3];
$B  = Special::incompleteBeta($x, $a, $b);
$Iₓ = Special::regularizedIncompleteBeta($x, $a, $b);

// Error function (Gauss error function)
$error = Special::errorFunction(2);              // same as erf
$error = Special::erf(2);                        // same as errorFunction
$error = Special::complementaryErrorFunction(2); // same as erfc
$error = Special::erfc(2);                       // same as complementaryErrorFunction

// Hypergeometric functions
$pFq = Special::generalizedHypergeometric($p, $q, $a, $b, $c, $z);
$₁F₁ = Special::confluentHypergeometric($a, $b, $z);
$₂F₁ = Special::hypergeometric($a, $b, $c, $z);

// Sign function (also known as signum or sgn)
$x    = 4;
$sign = Special::signum($x); // same as sgn
$sign = Special::sgn($x);    // same as signum

// Logistic function (logistic sigmoid function)
$x₀ = 2; // x-value of the sigmoid's midpoint
$L  = 3; // the curve's maximum value
$k  = 4; // the steepness of the curve
$x  = 5;
$logistic = Special::logistic($x₀, $L, $k, $x);

// Sigmoid function
$t = 2;
$sigmoid = Special::sigmoid($t);

// Softmax function
$𝐳    = [1, 2, 3, 4, 1, 2, 3];
$σ⟮𝐳⟯ⱼ = Special::softmax($𝐳);

Linear Algebra - Matrix

use MathPHP\LinearAlgebra\Matrix;

$matrix = [
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
];

// Matrix factory creates most appropriate matrix
$A = MatrixFactory::create($matrix);
$B = MatrixFactory::create($matrix);

// Can also directly instantiate desired matrix class
$A = new Matrix($matrix);
$B = new SquareMatrix($matrix);

// Basic matrix data
$array = $A->getMatrix();
$rows  = $A->getM();      // number of rows
$cols  = $A->getN();      // number of columns

// Basic matrix elements (zero-based indexing)
$row  = $A->getRow(2);
$col  = $A->getColumn(2);
$item = $A->get(2, 2);

// Row operations
list($mᵢ, $mⱼ, $k) = [1, 2, 5];
$R = $A->rowInterchange($mᵢ, $mⱼ);
$R = $A->rowMultiply($mᵢ, $k);     // Multiply row mᵢ by k
$R = $A->rowAdd($mᵢ, $mⱼ, $k);     // Add k * row mᵢ to row mⱼ
$R = $A->rowExclude($mᵢ);          // Exclude row $mᵢ

// Column operations
list($nᵢ, $nⱼ, $k) = [1, 2, 5];
$R = $A->columnInterchange($nᵢ, $nⱼ);
$R = $A->columnMultiply($nᵢ, $k);     // Multiply column nᵢ by k
$R = $A->columnAdd($nᵢ, $nⱼ, $k);     // Add k * column nᵢ to column nⱼ
$R = $A->columnExclude($nᵢ);          // Exclude column $nᵢ

// Matrix operations - return a new Matrix
$A+B = $A->add($B);
$A⊕B  = $A->directSum($B);
$A−B  = $A->subtract($B);
$AB   = $A->multiply($B);
$2A  = $A->scalarMultiply(2);
$A∘B  = $A->hadamardProduct($B);
$A⊗B  = $A->kroneckerProduct($B);
$Aᵀ  = $A->transpose();
$D   = $A->diagonal();
$⟮A∣B⟯ = $A->augment($B);
$⟮A∣I⟯ = $A->augmentIdentity();  // Augment with the identity matrix
$⟮A∣B⟯ = $A->augmentBelow($B);
$rref = $A->rref();             // Reduced row echelon form
$A⁻¹  = $A->inverse();
$Mᵢⱼ  = $A->minorMatrix($mᵢ, $nⱼ); // Square matrix with row mᵢ and column nⱼ removed
$CM   = $A->cofactorMatrix();

// Matrix operations - return a value
$tr⟮A⟯ = $A->trace();
$|A|  = $a->det();              // Determinant
$Mᵢⱼ  = $A->minor($mᵢ, $nⱼ);    // First minor
$Cᵢⱼ  = $A->cofactor($mᵢ, $nⱼ);

// Matrix norms - return a value
$‖A‖₁ = $A->oneNorm();
$‖A‖F = $A->frobeniusNorm(); // Hilbert–Schmidt norm
$‖A‖∞ = $A->infinityNorm();
$max  = $A->maxNorm();

// Matrix properties - return a bool
$bool = $A->isSquare();
$bool = $A->isSymmetric();

// Matrix decomposition
$PLU = $A->LUDecomposition(); // returns array of Matrices [L, U, P, A]; P is permutation matrix

// Solve a linear system of equations: Ax = b
$b = new Vector(1, 2, 3);
$x = $A->solve($b);

// Map a function over each element of the Matrix
$func = function($x) {
    return $x * 2;
};
$R = $A->map($func);

// Print a matrix
print($A);
/*
 [1, 2, 3]
 [2, 3, 4]
 [3, 4, 5]
 */

// Specialized matrices
list($m, $n, $k)     = [4, 4, 2];
$identity_matrix = MatrixFactory::identity($n);    // Ones on the main diagonal
$zero_matrix     = MatrixFactory::zero($m, $n);    // All zeros
$ones_matrix     = MatrixFactory::one($m, $n);     // All ones
$eye_matrix      = MatrixFactory::eye($m, $n, $k); // Ones (or other value) on the k-th diagonal

// Vandermonde matrix
$V = MatrixFactory::create([1, 2, 3], 4); // 4 x 3 Vandermonde matrix
$V = new VandermondeMatrix([1, 2, 3], 4); // Same as using MatrixFactory

// Diagonal matrix
$D = MatrixFactory::create([1, 2, 3]); // 3 x 3 diagonal matrix with zeros above and below the diagonal
$D = new DiagonalMatrix([1, 2, 3]);    // Same as using MatrixFactory

// PHP Predefined Interfaces
$json = json_encode($A); // JsonSerializable
$Aᵢⱼ  = $A[$mᵢ][$nⱼ];    // ArrayAccess

Linear Algebra - Vector

use MathPHP\LinearAlgebra\Vector;

// Vector
$A = new Vector([1, 2]);
$B = new Vector([2, 4]);

// Basic vector data
$array = $A->getVector();
$n     = $A->getN();           // number of elements
$M     = $A->asColumnMatrix(); // Vector as an nx1 matrix
$M     = $A->asRowMatrix();    // Vector as a 1xn matrix

// Basic vector elements (zero-based indexing)
$item = $A->get(1);

// Vector operations - return a value
$sum  = $A->sum();
$│A│  = $A->length();           // same as l2Norm
$A⋅B  = $A->dotProduct($B);     // same as innerProduct
$A⋅B  = $A->innerProduct($B);   // same as dotProduct
$A⊥⋅B = $A->perpDotProduct($B);

// Vector operations - return a Vector or Matrix
$kA    = $A->scalarMultiply($k);
$A+B  = $A->add($B);
$A−B   = $A->subtract($B);
$A/k  = $A->scalarDivide($k);
$A⨂B  = $A->outerProduct($B);
$AxB   = $A->crossProduct($B);
$AB    = $A->directProduct($B);
$Â     = $A->normalize();
$A⊥    = $A->perpendicular();
$projᵇA = $A->projection($B);   // projection of A onto B
$perpᵇA = $A->perp($B);         // perpendicular of A on B

// Vector norms - return a value
$l₁norm = $A->l1Norm();
$l²norm = $A->l2Norm();
$pnorm  = $A->pNorm();
$max    = $A->maxNorm();

// Print a vector
print($A); // [1, 2]

// PHP Predefined Interfaces
$n    = count($A);       // Countable
$json = json_encode($A); // JsonSerializable
$Aᵢ   = $A[$i];          // ArrayAccess

Numerical Analysis - Interpolation

use MathPHP\NumericalAnalysis\Interpolation;

// Interpolation is a method of constructing new data points with the range
// of a discrete set of known data points.
// Each integration method can take input in two ways:
//  1) As a set of points (inputs and outputs of a function)
//  2) As a callback function, and the number of function evaluations to
//     perform on an interval between a start and end point.

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];

// Lagrange Polynomial
// Returns a function p(x) of x
$p = Interpolation\LagrangePolynomial::interpolate($points);                // input as a set of points
$p = Interpolation\LagrangePolynomial::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Nevilles Method
// More accurate than Lagrange Polynomial Interpolation given the same input
// Returns the evaluation of the interpolating polynomial at the $target point
$target = 2;
$result = Interpolation\NevillesMethod::interpolate($target, $points);                // input as a set of points
$result = Interpolation\NevillesMethod::interpolate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Newton Polynomial (Forward)
// Returns a function p(x) of x
$p = Interpolation\NewtonPolynomialForward::interpolate($points);                // input as a set of points
$p = Interpolation\NewtonPolynomialForward::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Natural Cubic Spline
// Returns a piecewise polynomial p(x)
$p = Interpolation\NaturalCubicSpline::interpolate($points);                // input as a set of points
$p = Interpolation\NaturalCubicSpline::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Clamped Cubic Spline
// Returns a piecewise polynomial p(x)

// Input as a set of points
$points = [[0, 1, 0], [1, 4, -1], [2, 9, 4], [3, 16, 0]];

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
$f’⟮x⟯ = function ($x) {
    return 2*$x + 2;
};
list($start, $end, $n) = [0, 3, 4];

$p = Interpolation\ClampedCubicSpline::interpolate($points);                // input as a set of points
$p = Interpolation\ClampedCubicSpline::interpolate($f⟮x⟯, $f’⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

Numerical Analysis - Numerical Differentiation

use MathPHP\NumericalAnalysis\NumericalDifferentiation;

// Numerical Differentiation approximates the derivative of a function.
// Each Differentiation method can take input in two ways:
//  1) As a set of points (inputs and outputs of a function)
//  2) As a callback function, and the number of function evaluations to
//     perform on an interval between a start and end point.

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};

// Three Point Formula
// Returns an approximation for the derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9]];

$target = 0;
list($start, $end, $n) = [0, 2, 3];
$derivative = NumericalDifferentiation\ThreePointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\ThreePointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Five Point Formula
// Returns an approximation for the derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4, 25]];

$target = 0;
list($start, $end, $n) = [0, 4, 5];
$derivative = NumericalDifferentiation\FivePointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\FivePointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Second Derivative Midpoint Formula
// Returns an approximation for the second derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9];

$target = 1;
list($start, $end, $n) = [0, 2, 3];
$derivative = NumericalDifferentiation\SecondDerivativeMidpointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\SecondDerivativeMidpointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

Numerical Analysis - Numerical Integration

use MathPHP\NumericalAnalysis\NumericalIntegration;

// Numerical integration approximates the definite integral of a function.
// Each integration method can take input in two ways:
//  1) As a set of points (inputs and outputs of a function)
//  2) As a callback function, and the number of function evaluations to
//     perform on an interval between a start and end point.

// Trapezoidal Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\TrapezoidalRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\TrapezoidalRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Simpsons Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4,3]];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 5];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Simpsons 3/8 Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsThreeEighthsRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 5];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsThreeEighthsRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Booles Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4, 25]];
$∫f⟮x⟯dx = NumericalIntegration\BoolesRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**3 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 4, 5];
$∫f⟮x⟯dx = NumericalIntegration\BoolesRuleRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Rectangle Method (open Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\RectangleMethod::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\RectangleMethod::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Midpoint Rule (open Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\MidpointRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\MidpointRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

Numerical Analysis - Root Finding

use MathPHP\NumericalAnalysis\RootFinding;

// Root-finding methods solve for a root of a polynomial.

// f(x) = x⁴ + 8x³ -13x² -92x + 96
$f⟮x⟯ = function($x) {
    return $x**4 + 8 * $x**3 - 13 * $x**2 - 92 * $x + 96;
};

// Newton's Method
$args     = [-4.1];  // Parameters to pass to callback function (initial guess, other parameters)
$target   = 0;       // Value of f(x) we a trying to solve for
$tol      = 0.00001; // Tolerance; how close to the actual solution we would like
$position = 0;       // Which element in the $args array will be changed; also serves as initial guess. Defaults to 0.
$x        = RootFinding\NewtonsMethod::solve($f⟮x⟯, $args, $target, $tol, $position); // Solve for x where f(x) = $target

// Secant Method
$p₀  = -1;      // First initial approximation
$p₁  = 2;       // Second initial approximation
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\SecantMethod::solve($f⟮x⟯, $p₀, $p₁, $tol); // Solve for x where f(x) = 0

// Bisection Method
$a   = 2;       // The start of the interval which contains a root
$b   = 5;       // The end of the interval which contains a root
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\BisectionMethod::solve($f⟮x⟯, $a, $b, $tol); // Solve for x where f(x) = 0

// Fixed-Point Iteration
// f(x) = x⁴ + 8x³ -13x² -92x + 96
// Rewrite f(x) = 0 as (x⁴ + 8x³ -13x² + 96)/92 = x
// Thus, g(x) = (x⁴ + 8x³ -13x² + 96)/92
$g⟮x⟯ = function($x) {
    return ($x**4 + 8 * $x**3 - 13 * $x**2 + 96)/92;
};
$a   = 0;       // The start of the interval which contains a root
$b   = 2;       // The end of the interval which contains a root
$p   = 0;       // The initial guess for our root
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\FixedPointIteration::solve($g⟮x⟯, $a, $b, $p, $tol); // Solve for x where f(x) = 0

Probability - Combinatorics

use MathPHP\Probability\Combinatorics;

list($n, $x, $k) = [10, 3, 4];

// Factorials
$n!  = Combinatorics::factorial($n);
$n‼︎   = Combinatorics::doubleFactorial($n);
$x⁽ⁿ⁾ = Combinatorics::risingFactorial($x, $n);
$x₍ᵢ₎ = Combinatorics::fallingFactorial($x, $n);
$!n  = Combinatorics::subfactorial($n);

// Permutations
$nPn = Combinatorics::permutations($n);     // Permutations of n things, taken n at a time (same as factorial)
$nPk = Combinatorics::permutations($n, $k); // Permutations of n things, taking only k of them

// Combinations
$nCk  = Combinatorics::combinations($n, $k);                            // n choose k without repetition
$nC′k = Combinatorics::combinations($n, $k, Combinatorics::REPETITION); // n choose k with repetition (REPETITION const = true)

// Central binomial coefficient
$cbc = Combinatorics::centralBinomialCoefficient($n);

// Catalan number
$Cn = Combinatorics::catalanNumber($n);

// Lah number
$L⟮n、k⟯ = Combinatorics::lahNumber($n, $k)

// Multinomial coefficient
$groups    = [5, 2, 3];
$divisions = Combinatorics::multinomial($groups);

Probability - Continuous Distributions

use MathPHP\Probability\Distribution\Continuous;

// Beta distribution
$α   = 1; // shape parameter
$β   = 1; // shape parameter
$x   = 2;
$pdf = Beta::PDF($α, $β, $x);
$cdf = Beta::CDF($α, $β, $x);
$μ   = Beta::mean($α, $β);

// Cauchy distribution
$x   = 1;
$x₀  = 2; // location parameter
$γ   = 3; // scale parameter
$pdf = Cauchy::PDF(x, x₀, γ);
$cdf = Cauchy::CDF(x, x₀, γ);

// χ²-distribution (Chi-Squared)
$x   = 1;
$k   = 2; // degrees of freedom
$pdf = ChiSquared::PDF($x, $k);
$cdf = ChiSquared::CDF($x, $k);

// Exponential distribution
$x   = 2; // random variable
$λ   = 1; // rate parameter
$pdf = Exponential::PDF($x, $λ);
$cdf = Exponential::CDF($x, $λ);
$μ   = Exponential::mean($λ);

// F-distribution
$x   = 2;
$d₁  = 3; // degree of freedom v1
$d₂  = 4; // degree of freedom v2
$pdf = F::PDF($x, $d₁, $d₂);
$cdf = F::CDF($x, $d₁, $d₂);
$μ   = F::mean($d₁, $d₂);

// Laplace distribution
$x   = 1;
$μ   = 1;   // location parameter
$b   = 1.5; // scale parameter (diversity)
$pdf = Laplace::PDF($x, $μ, $b);
$cdf = Laplace::CDF($x, $μ, $b);

// Logistic distribution
$x   = 3;
$μ   = 2;   // location parameter
$s   = 1.5; // scale parameter
$pdf = Logistic::PDF($x, $μ, $s);
$cdf = Logistic::CDF($x, $μ, $s);

// Log-logistic distribution (Fisk distribution)
$x   = 2;
$α   = 1; // scale parameter
$β   = 1; // shape parameter
$pdf = LogLogistic::PDF($x, $α, $β);
$cdf = LogLogistic::CDF($x, $α, $β);
$μ   = LogLogistic::mean($α, $β);

// Log-normal distribution
$x = 4.3;
$μ = 6;   // scale parameter
$σ = 2;   // location parameter
$pdf  = LogNormal::PDF($x, $μ, $σ);
$cdf  = LogNormal::CDF($x, $μ, $σ);
$mean = LogNormal::mean($μ, $σ);

// Normal distribution
list($x, $σ, $μ) = [2, 1, 0];
$pdf = Normal::PDF($x, $μ, $σ);
$cdf = Normal::CDF($x, $μ, $σ);

// Noncentral T distribution
list($x, $ν, $μ) = [8, 50, 10];
$pdf  = NoncentralT::PDF($x, $ν, $μ);
$cdf  = NoncentralT::CDF($x, $ν, $μ);
$mean = NoncentralT::mean($ν, $μ);

// Pareto distribution
$x   = 2;
$a   = 1; // shape parameter
$b   = 1; // scale parameter
$pdf = Pareto::PDF($x, $a, $b);
$cdf = Pareto::CDF($x, $a, $b);
$μ   = Pareto::mean($a, $b);

// Standard normal distribution
$z   = 2;
$pdf = StandardNormal::PDF($z);
$cdf = StandardNormal::CDF($z);

// Student's t-distribution
$x   = 2;
$ν   = 3;   // degrees of freedom
$p   = 0.4; // proportion of area
$pdf = StudentT::PDF($x, $ν);
$cdf = StudentT::CDF($x, $ν);
$t   = StudentT::inverse2Tails($p, $ν);  // t such that the area greater than t and the area beneath -t is p

// Uniform distribution
$a   = 1; // lower boundary of the distribution
$b   = 4; // upper boundary of the distribution
$x   = 2;
$pdf = Uniform::PDF($a, $b, $x);
$cdf = Uniform::CDF($a, $b, $x);
$μ   = Uniform::mean($a, $b);

// Weibull distribution
$x   = 2;
$k   = 1; // shape parameter
$λ   = 2; // scale parameter
$pdf = Weibull::PDF($x, $k, $λ);
$cdf = Weibull::CDF($x, $k, $λ);
$μ   = Weibull::mean($k, $λ);

// Other CDFs - All continuous distributions (...params will be distribution-specific)
// Replace 'DistributionName' with desired distribution.
$inv_cdf = DistributionName::inverse($target, ...$params);   // Inverse CDF of the distribution
$between = DistributionName::between($x₁, $x₂, ...$params);  // Probability of being between two points, x₁ and x₂
$outside = DistributionName::outside($x₁, $x₂, ...$params);  // Probability of being between below x₁ and above x₂
$above   = DistributionName::above($x, ...$params);          // Probability of being above x to ∞

// Random Number Generator
$random  = DistributionName::rand(...$params);               // A random number with a given distribution

Probability - Discrete Distributions

use MathPHP\Probability\Distribution\Discrete;

// Binomial distribution
$n = 2;   // number of events
$r = 1;   // number of successful events
$P = 0.5; // probability of success
$pmf = Binomial::PMF($n, $r, $P);
$cdf = Binomial::CDF($n, $r, $P);

// Bernoulli distribution (special case of binomial where n = 1)
$pmf = Bernoulli::PMF($r, $P);
$cdf = Bernoulli::CDF($r, $P);

// Geometric distribution (failures before the first success)
$k = 2;   // number of trials
$p = 0.5; // success probability
$pmf = Geometric::PMF($k, $p);
$cdf = Geometric::CDF($k, $p);

// Multinomial distribution
$frequencies   = [7, 2, 3];
$probabilities = [0.40, 0.35, 0.25];
$pmf = Multinomial::PMF($frequencies, $probabilities);

// Negative binomial distribution (Pascal)
$x = 2;   // number of trials required to produce r successes
$r = 1;   // number of successful events
$P = 0.5; // probability of success on an individual trial
$pmf = NegativeBinomial::PMF($x, $r, $P);  // same as Pascal::PMF
$pmf = Pascal::PMF($x, $r, $P);            // same as NegativeBinomial::PMF

// Poisson distribution
$k = 3; // events in the interval
$λ = 2; // average number of successful events per interval
$pmf = Poisson::PMF($k, $λ);
$cdf = Poisson::CDF($k, $λ);

// Shifted geometric distribution (probability to get one success)
$k = 2;   // number of trials
$p = 0.5; // success probability
$pmf = ShiftedGeometric::PMF($k, $p);
$cdf = ShiftedGeometric::CDF($k, $p);

Probability - Distribution Tables

use MathPHP\Probability\Distribution\Table;

// Provided solely for completeness' sake.
// It is statistics tradition to provide these tables.
// Math PHP has dynamic distribution CDF functions you can use instead.

// Standard Normal Table (Z Table)
$table       = Table\StandardNormal::Z_SCORES;
$probability = $table[1.5][0];                 // Value for Z of 1.50

// t Distribution Tables
$table   = Table\TDistribution::ONE_SIDED_CONFIDENCE_LEVEL;
$table   = Table\TDistribution::TWO_SIDED_CONFIDENCE_LEVEL;
$ν       = 5;  // degrees of freedom
$cl      = 99; // confidence level
$t       = $table[$ν][$cl];

// t Distribution Tables
$table = Table\TDistribution::ONE_SIDED_ALPHA;
$table = Table\TDistribution::TWO_SIDED_ALPHA;
$ν     = 5;     // degrees of freedom
$α     = 0.001; // alpha value
$t     = $table[$ν][$α];

// χ² Distribution Table
$table = Table\ChiSquared::CHI_SQUARED_SCORES;
$df    = 2;    // degrees of freedom
$p     = 0.05; // P value
$χ²    = $table[$df][$p];

Sequences - Basic

use MathPHP\Sequence\Basic;

$n = 5; // Number of elements in the sequence

// Arithmetic progression
$d           = 2;  // Difference between the elements of the sequence
$a₁          = 1;  // Starting number for the sequence
$progression = Basic::arithmeticProgression($n, $d, $a₁);
// [1, 3, 5, 7, 9] - Indexed from 1

// Geometric progression (arⁿ⁻¹)
$a           = 2; // Scalar value
$r           = 3; // Common ratio
$progression = Basic::geometricProgression($n, $a, $r);
// [2(3)⁰, 2(3)¹, 2(3)², 2(3)³] = [2, 6, 18, 54] - Indexed from 1

// Square numbers (n²)
$squares = Basic::squareNumber($n);
// [0², 1², 2², 3², 4²] = [0, 1, 4, 9, 16] - Indexed from 0

// Cubic numbers (n³)
$cubes = Basic::cubicNumber($n);
// [0³, 1³, 2³, 3³, 4³] = [0, 1, 8, 27, 64] - Indexed from 0

// Powers of 2 (2ⁿ)
$po2 = Basic::powersOfTwo($n);
// [2⁰, 2¹, 2², 2³, 2⁴] = [1,  2,  4,  8,  16] - Indexed from 0

// Powers of 10 (10ⁿ)
$po10 = Basic::powersOfTen($n);
// [10⁰, 10¹, 10², 10³,  10⁴] = [1, 10, 100, 1000, 10000] - Indexed from 0

// Factorial (n!)
$fact = Basic::factorial($n);
// [0!, 1!, 2!, 3!, 4!] = [1,  1,  2,  6,  24] - Indexed from 0

Sequences - Advanced

use MathPHP\Sequence\Advanced;

$n = 6; // Number of elements in the sequence

// Fibonacci (Fᵢ = Fᵢ₋₁ + Fᵢ₋₂)
$fib = Advanced::fibonacci($n);
// [0, 1, 1, 2, 3, 5] - Indexed from 0

// Lucas numbers
$lucas = Advanced::lucasNumber($n);
// [2, 1, 3, 4, 7, 11] - Indexed from 0

// Pell numbers
$pell = Advanced::pellNumber($n);
// [0, 1, 2, 5, 12, 29] - Indexed from 0

// Triangular numbers (figurate number)
$triangles = Advanced::triangularNumber($n);
// [1, 3, 6, 10, 15, 21] - Indexed from 1

// Pentagonal numbers (figurate number)
$pentagons = Advanced::pentagonalNumber($n);
// [1, 5, 12, 22, 35, 51] - Indexed from 1

// Hexagonal numbers (figurate number)
$hexagons = Advanced::hexagonalNumber($n);
// [1, 6, 15, 28, 45, 66] - Indexed from 1

// Heptagonal numbers (figurate number)
$hexagons = Advanced::heptagonalNumber($n)
// [1, 4, 7, 13, 18, 27] - Indexed from 1

Set Theory

use MathPHP\SetTheory\Set;
use MathPHP\SetTheory\ImmutableSet;

// Sets and immutable sets
$A = new Set([1, 2, 3]);          // Can add and remove members
$B = new ImmutableSet([3, 4, 5]); // Cannot modify set once created

// Basic set data
$set         = $A->asArray();
$cardinality = $A->length();
$bool        = $A->isEmpty();

// Set membership
$true = $A->isMember(2);
$true = $A->isNotMember(8);

// Add and remove members
$A->add(4);
$A->add(new Set(['a', 'b']));
$A->addMulti([5, 6, 7]);
$A->remove(7);
$A->removeMulti([5, 6]);
$A->clear();

// Set properties against other sets - return boolean
$bool = $A->isDisjoint($B);
$bool = $A->isSubset($B);         // A ⊆ B
$bool = $A->isProperSubset($B);   // A ⊆ B & A ≠ B
$bool = $A->isSuperset($B);       // A ⊇ B
$bool = $A->isProperSuperset($B); // A ⊇ B & A ≠ B

// Set operations with other sets - return a new Set
$A∪B  = $A->union($B);
$A∩B  = $A->intersect($B);
$A\B = $A->difference($B);          // relative complement
$AΔB  = $A->symmetricDifference($B);
$A×B  = $A->cartesianProduct($B);

// Other set operations
$P⟮A⟯ = $A->powerSet();
$C   = $A->copy();

// Print a set
print($A); // Set{1, 2, 3, 4, Set{a, b}}

// PHP Interfaces
$n = count($A);                 // Countable
foreach ($A as $member) { ... } // Iterator

// Fluent interface
$A->add(5)->add(6)->remove(4)->addMulti([7, 8, 9]);

Statistics - ANOVA

use MathPHP\Statistics\ANOVA;

// One-way ANOVA
$sample1 = [1, 2, 3];
$sample2 = [3, 4, 5];
$sample3 = [5, 6, 7];
   ⋮            ⋮

$anova = ANOVA::oneWay($sample1, $sample2, $sample3);
print_r($anova);
/* Array (
    [ANOVA] => Array (             // ANOVA hypothesis test summary data
            [treatment] => Array (
                    [SS] => 24     // Sum of squares (between)
                    [df] => 2      // Degrees of freedom
                    [MS] => 12     // Mean squares
                    [F]  => 12     // Test statistic
                    [P]  => 0.008  // P value
                )
            [error] => Array (
                    [SS] => 6      // Sum of squares (within)
                    [df] => 6      // Degrees of freedom
                    [MS] => 1      // Mean squares
                )
            [total] => Array (
                    [SS] => 30     // Sum of squares (total)
                    [df] => 8      // Degrees of freedom
                )
        )
    [total_summary] => Array (     // Total summary data
            [n]        => 9
            [sum]      => 36
            [mean]     => 4
            [SS]       => 174
            [variance] => 3.75
            [sd]       => 1.9364916731037
            [sem]      => 0.6454972243679
        )
    [data_summary] => Array (      // Data summary (each input sample)
            [0] => Array ([n] => 3 [sum] => 6  [mean] => 2 [SS] => 14  [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
            [1] => Array ([n] => 3 [sum] => 12 [mean] => 4 [SS] => 50  [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
            [2] => Array ([n] => 3 [sum] => 18 [mean] => 6 [SS] => 110 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
        )
) */

// Two-way ANOVA
/*        | Factor B₁ | Factor B₂ | Factor B₃ | ⋯
Factor A₁ |  4, 6, 8  |  6, 6, 9  |  8, 9, 13 | ⋯
Factor A₂ |  4, 8, 9  | 7, 10, 13 | 12, 14, 16| ⋯
    ⋮           ⋮           ⋮           ⋮         */
$factorA₁ = [
  [4, 6, 8],    // Factor B₁
  [6, 6, 9],    // Factor B₂
  [8, 9, 13],   // Factor B₃
];
$factorA₂ = [
  [4, 8, 9],    // Factor B₁
  [7, 10, 13],  // Factor B₂
  [12, 14, 16], // Factor B₃
];
       ⋮

$anova = ANOVA::twoWay($factorA₁, $factorA₂);
print_r($anova);
/* Array (
    [ANOVA] => Array (          // ANOVA hypothesis test summary data
            [factorA] => Array (
                    [SS] => 32                 // Sum of squares
                    [df] => 1                  // Degrees of freedom
                    [MS] => 32                 // Mean squares
                    [F]  => 5.6470588235294    // Test statistic
                    [P]  => 0.034994350619895  // P value
                )
            [factorB] => Array (
                    [SS] => 93                 // Sum of squares
                    [df] => 2                  // Degrees of freedom
                    [MS] => 46.5               // Mean squares
                    [F]  => 8.2058823529412    // Test statistic
                    [P]  => 0.0056767297582031 // P value
                )
            [interaction] => Array (
                    [SS] => 7                  // Sum of squares
                    [df] => 2                  // Degrees of freedom
                    [MS] => 3.5                // Mean squares
                    [F]  => 0.61764705882353   // Test statistic
                    [P]  => 0.5555023440712    // P value
                )
            [error] => Array (
                    [SS] => 68                 // Sum of squares (within)
                    [df] => 12                 // Degrees of freedom
                    [MS] => 5.6666666666667    // Mean squares
                )
            [total] => Array (
                    [SS] => 200                // Sum of squares (total)
                    [df] => 17                 // Degrees of freedom
                )
        )
    [total_summary] => Array (    // Total summary data
            [n]        => 18
            [sum]      => 162
            [mean]     => 9
            [SS]       => 1658
            [variance] => 11.764705882353
            [sd]       => 3.4299717028502
            [sem]      => 0.80845208345444
        )
    [summary_factorA]     => Array ( ... )   // Summary data of factor A
    [summary_factorB]     => Array ( ... )   // Summary data of factor B
    [summary_interaction] => Array ( ... )   // Summary data of interactions of factors A and B
) */

Statistics - Averages

use MathPHP\Statistics\Average;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

// Mean, median, mode
$mean   = Average::mean($numbers);
$median = Average::median($numbers);
$mode   = Average::mode($numbers); // Returns an array — may be multimodal

// Other means of a list of numbers
$geometric_mean      = Average::geometricMean($numbers);
$harmonic_mean       = Average::harmonicMean($numbers);
$contraharmonic_mean = Average::contraharmonicMean($numbers);
$quadratic_mean      = Average::quadraticMean($numbers);  // same as rootMeanSquare
$root_mean_square    = Average::rootMeanSquare($numbers); // same as quadraticMean
$trimean             = Average::trimean($numbers);
$interquartile_mean  = Average::interquartileMean($numbers); // same as iqm
$interquartile_mean  = Average::iqm($numbers);               // same as interquartileMean
$cubic_mean          = Average::cubicMean($numbers);

// Truncated mean (trimmed mean)
$trim_percent   = 25;
$truncated_mean = Average::truncatedMean($numbers, $trim_percent);

// Generalized mean (power mean)
$p                = 2;
$generalized_mean = Average::generalizedMean($numbers, $p); // same as powerMean
$power_mean       = Average::powerMean($numbers, $p);       // same as generalizedMean

// Lehmer mean
$p           = 3;
$lehmer_mean = Average::lehmerMean($numbers, $p);

// Moving averages
$n       = 3;
$weights = [3, 2, 1];
$SMA     = Average::simpleMovingAverage($numbers, $n);             // 3 n-point moving average
$CMA     = Average::cumulativeMovingAverage($numbers);
$WMA     = Average::weightedMovingAverage($numbers, $n, $weights);
$EPA     = Average::exponentialMovingAverage($numbers, $n);

// Means of two numbers
list($x, $y) = [24, 6];
$agm           = Average::arithmeticGeometricMean($x, $y); // same as agm
$agm           = Average::agm($x, $y);                     // same as arithmeticGeometricMean
$log_mean      = Average::logarithmicMean($x, $y);
$heronian_mean = Average::heronianMean($x, $y);
$identric_mean = Average::identricMean($x, $y);

// Averages report
$averages = Average::describe($numbers);
print_r($averages);
/* Array (
    [mean]                => 15
    [median]              => 14
    [mode]                => Array ( [0] => 13 )
    [geometric_mean]      => 14.789726414533
    [harmonic_mean]       => 14.605077399381
    [contraharmonic_mean] => 15.474074074074
    [quadratic_mean]      => 15.235193176035
    [trimean]             => 14.5
    [iqm]                 => 14
    [cubic_mean]          => 15.492307432707
) */

Statistics - Correlation

use MathPHP\Statistics\Correlation;

$X = [1, 2, 3, 4, 5];
$Y = [2, 3, 4, 4, 6];

// Covariance
$σxy = Correlation::covariance($X, $Y);  // Has optional parameter to set population (defaults to sample covariance)

// r - Pearson product-moment correlation coefficient (Pearson's r)
$r = Correlation::r($X, $Y);  // Has optional parameter to set population (defaults to sample correlation coefficient)

// R² - Coefficient of determination
$ = Correlation::R2($X, $Y);  // Has optional parameter to set population (defaults to sample coefficient of determination)

// τ - Kendall rank correlation coefficient (Kendall's tau)
$τ = Correlation::kendallsTau($X, $Y);

// ρ - Spearman's rank correlation coefficient (Spearman's rho)
$ρ = Correlation::spearmansRho($X, $Y);

// Descriptive correlation report
$stats = Correlation::describe($X, $Y);
print_r($stats);
/* Array (
    [cov] => 2.25
    [r]   => 0.95940322360025
    [R2]  => 0.92045454545455
    [tau] => 0.94868329805051
    [rho] => 0.975
) */

Statistics - Descriptive

use MathPHP\Statistics\Descriptive;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

// Range and midrange
$range    = Descriptive::range($numbers);
$midrange = Descriptive::midrange($numbers);

// Variance (population and sample)
$σ² = Descriptive::populationVariance($numbers); // n degrees of freedom
$ = Descriptive::sampleVariance($numbers);     // n - 1 degrees of freedom

// Variance (Custom degrees of freedom)
$df = 5;                                    // degrees of freedom
$ = Descriptive::variance($numbers, $df); // can specify custom degrees of freedom

// Standard deviation (Uses population variance)
$σ = Descriptive::sd($numbers);                // same as standardDeviation;
$σ = Descriptive::standardDeviation($numbers); // same as sd;

// SD+ (Standard deviation for a sample; uses sample variance)
$SD+ = Descriptive::sd($numbers, Descriptive::SAMPLE); // SAMPLE constant = true
$SD+ = Descriptive::standardDeviation($numbers, true); // same as sd with SAMPLE constant

// Coefficient of variation (cᵥ)
$cᵥ = Descriptive::coefficientOfVariation($numbers);

// MAD - mean/median absolute deviations
$mean_mad   = Descriptive::meanAbsoluteDeviation($numbers);
$median_mad = Descriptive::medianAbsoluteDeviation($numbers);

// Quartiles (inclusive and exclusive methods)
// [0% => 13, Q1 => 13, Q2 => 14, Q3 => 17, 100% => 21, IQR => 4]
$quartiles = Descriptive::quartiles($numbers);          // Has optional parameter to specify method. Default is Exclusive
$quartiles = Descriptive::quartilesExclusive($numbers);
$quartiles = Descriptive::quartilesInclusive($numbers);

// IQR - Interquartile range
$IQR = Descriptive::interquartileRange($numbers); // Same as IQR; has optional parameter to specify quartile method.
$IQR = Descriptive::IQR($numbers);                // Same as interquartileRange; has optional parameter to specify quartile method.

// Percentiles
$twentieth_percentile    = Descriptive::percentile($numbers, 20);
$ninety_fifth_percentile = Descriptive::percentile($numbers, 95);

// Midhinge
$midhinge = Descriptive::midhinge($numbers);

// Describe a list of numbers - descriptive stats report
$stats = Descriptive::describe($numbers); // Has optional parameter to set population or sample calculations
print_r($stats);
/* Array (
    [n]          => 9
    [min]        => 13
    [max]        => 21
    [mean]       => 15
    [median]     => 14
    [mode]       => Array ( [0] => 13 )
    [range]      => 8
    [midrange]   => 17
    [variance]   => 8
    [sd]         => 2.8284271247462
    [cv]         => 0.18856180831641
    [mean_mad]   => 2.2222222222222
    [median_mad] => 1
    [quartiles]  => Array (
            [0%]   => 13
            [Q1]   => 13
            [Q2]   => 14
            [Q3]   => 17
            [100%] => 21
            [IQR]  => 4
        )
    [midhinge]   => 15
    [skewness]   => 1.4915533665654
    [ses]        => 0.71713716560064
    [kurtosis]   => 0.1728515625
    [sek]        => 1.3997084244475
    [sem]        => 0.94280904158206
    [ci_95]      => Array (
            [ci]          => 1.8478680091392
            [lower_bound] => 13.152131990861
            [upper_bound] => 16.847868009139
        )
    [ci_99]      => Array (
            [ci]          => 2.4285158135783
            [lower_bound] => 12.571484186422
            [upper_bound] => 17.428515813578
        )
) */

// Five number summary - five most important sample percentiles
$summary = Descriptive::fiveNumberSummary($numbers);
// [min, Q1, median, Q3, max]

Statistics - Distributions

use MathPHP\Statistics\Distribution;

$grades = ['A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'D', 'F'];

// Frequency distributions (frequency and relative frequency)
$frequencies          = Distribution::frequency($grades);         // [ A => 2,   B => 4,   C => 2,   D => 1,   F => 1   ]
$relative_frequencies = Distribution::relativeFrequency($grades); // [ A => 0.2, B => 0.4, C => 0.2, D => 0.1, F => 0.1 ]

// Cumulative frequency distributions (cumulative and cumulative relative)
$cumulative_frequencies          = Distribution::cumulativeFrequency($grades);         // [ A => 2,   B => 6,   C => 8,   D => 9,   F => 10  ]
$cumulative_relative_frequencies = Distribution::cumulativeRelativeFrequency($grades); // [ A => 0.2, B => 0.6, C => 0.8, D => 0.9, F => 1   ]

// Stem and leaf plot
// Return value is array where keys are the stems, values are the leaves
$values             = [44, 46, 47, 49, 63, 64, 66, 68, 68, 72, 72, 75, 76, 81, 84, 88, 106];
$stem_and_leaf_plot = Distribution::stemAndLeafPlot($values);
// [4 => [4, 6, 7, 9], 5 => [], 6 => [3, 4, 6, 8, 8], 7 => [2, 2, 5, 6], 8 => [1, 4, 8], 9 => [], 10 => [6]]

// Optional second parameter will print stem and leaf plot to STDOUT
Distribution::stemAndLeafPlot($values, Distribution::PRINT);
/*
 4 | 4 6 7 9
 5 |
 6 | 3 4 6 8 8
 7 | 2 2 5 6
 8 | 1 4 8
 9 |
10 | 6
*/

Statistics - Effect Size

use MathPHP\Statistics\EffectSize;

$SSt = 24;  // Sum of squares treatment
$SSE = 300; // Sum of squares error
$SST = 600; // Sum of squares total
$dft = 1;   // Degrees of freedom treatment
$MSE = 18;  // Mean squares error

// η² - Eta-squared
$η²  = EffectSize::etaSquared($SSt, $SST);
$η²p = EffectSize::partialEtaSquared($SSt, $SSE);

// ω² - Omega-squared
$ω² = EffectSize::omegaSquared($SSt, $dft, $SST, $MSE);

// Cohen's ƒ²
$ƒ² = EffectSize::cohensF($η²);
$ƒ² = EffectSize::cohensF($ω²);
$ƒ² = EffectSize::cohensF($);

// Cohen's q
list($r₁, $r₂) = [0.1, 0.2];
$q = EffectSize::cohensQ($r₁, $r₂);

// Cohen's d
list($μ₁, $σ₁) = [6.7, 1.2];
list($μ₂, $σ₂) = [6, 1];
$d = EffectSize::cohensD($μ₁, $μ₂, $σ₁, $σ₂);

// Hedges' g
list($μ₁, $σ₁, $n₁) = [6.7, 1.2, 15];
list($μ₂, $σ₂, $n₂) = [6, 1, 15];
$g = EffectSize::hedgesG($μ₁, $μ₂, $σ₁, $σ₂, $n₁, $n₂);

// Glass' Δ
$Δ = EffectSize::glassDelta($μ₁, $μ₂, $σ₂);

Statistics - Experiments

use MathPHP\Statistics\Experiment;

$a = 28;   // Exposed and event present
$b = 129;  // Exposed and event absent
$c = 4;    // Non-exposed and event present
$d = 133;  // Non-exposed and event absent

// Risk ratio (relative risk) - RR
$RR = Experiment::riskRatio($a, $b, $c, $d);
// ['RR' => 6.1083, 'ci_lower_bound' => 2.1976, 'ci_upper_bound' => 16.9784, 'p' => 0.0005]

// Odds ratio (OR)
$OR = Experiment::oddsRatio($a, $b, $c, $d);
// ['OR' => 7.2171, 'ci_lower_bound' => 2.4624, 'ci_upper_bound' => 21.1522, 'p' => 0.0003]

// Likelihood ratios (positive and negative)
$LL = Experiment::likelihoodRatio($a, $b, $c, $d);
// ['LL+' => 7.4444, 'LL-' => 0.3626]

$sensitivity = 0.67;
$specificity = 0.91;
$LL          = Experiment::likelihoodRatioSS($sensitivity, $specificity);

Statistics - Random Variables

use MathPHP\Statistics\RandomVariable;

$X = [1, 2, 3, 4];
$Y = [2, 3, 4, 5];

// Central moment (nth moment)
$second_central_moment = RandomVariable::centralMoment($X, 2);
$third_central_moment  = RandomVariable::centralMoment($X, 3);

// Skewness (population and sample)
$skewness = RandomVariable::skewness($X);            // general method of calculating skewness
$skewness = RandomVariable::populationSkewness($X);  // similar to Excel's SKEW.P
$skewness = RandomVariable::sampleSkewness($X);      // similar to Excel's SKEW
$SES      = RandomVariable::SES(count($X));          // standard error of skewness

// Kurtosis (excess)
$kurtosis    = RandomVariable::kurtosis($X);
$platykurtic = RandomVariable::isPlatykurtic($X); // true if kurtosis is less than zero
$leptokurtic = RandomVariable::isLeptokurtic($X); // true if kurtosis is greater than zero
$mesokurtic  = RandomVariable::isMesokurtic($X);  // true if kurtosis is zero
$SEK         = RandomVariable::SEK(count($X));    // standard error of kurtosis

// Standard error of the mean (SEM)
$sem = RandomVariable::standardErrorOfTheMean($X); // same as sem
$sem = RandomVariable::sem($X);                    // same as standardErrorOfTheMean

// Confidence interval
$μ  = 90; // sample mean
$n  = 9;  // sample size
$σ  = 36; // standard deviation
$cl = 99; // confidence level
$ci = RandomVariable::confidenceInterval($μ, $n, $σ, $cl); // Array( [ci] => 30.91, [lower_bound] => 59.09, [upper_bound] => 120.91 )

Statistics - Regressions

use MathPHP\Statistics\Regression;

$points = [[1,2], [2,3], [4,5], [5,7], [6,8]];

// Simple linear regression (least squares method)
$regression = new Regresion\Linear($points);
$parameters = $regression->getParameters();          // [m => 1.2209302325581, b => 0.6046511627907]
$equation   = $regression->getEquation();            // y = 1.2209302325581x + 0.6046511627907
$y          = $regression->evaluate(5);              // Evaluate for y at x = 5 using regression equation
$ci         = $regression->CI(5, 0.5);               // Confidence interval for x = 5 with p-value of 0.5
$pi         = $regression->PI(5, 0.5);               // Prediction interval for x = 5 with p-value of 0.5; Optional number of trials parameter.
$Ŷ          = $regression->yHat();
$r          = $regression->r();                      // same as correlationCoefficient
$         = $regression->r2();                     // same as coefficientOfDetermination
$se         = $regression->standardErrors();         // [m => se(m), b => se(b)]
$t          = $regression->tValues();                // [m => t, b => t]
$p          = $regression->tProbability();           // [m => p, b => p]
$F          = $regression->FStatistic();
$p          = $regression->FProbability();
$h          = $regression->leverages();
$e          = $regression->residuals();
$D          = $regression->cooksD();
$DFFITS     = $regression->DFFITS();
$SStot      = $regression->sumOfSquaresTotal();
$SSreg      = $regression->sumOfSquaresRegression();
$SSres      = $regression->sumOfSquaresResidual();
$MSR        = $regression->meanSquareRegression();
$MSE        = $regression->meanSquareResidual();
$MSTO       = $regression->meanSquareTotal();
$error      = $regression->errorSD();                // Standard error of the residuals
$V          = $regression->regressionVariance();
$n          = $regression->getSampleSize();          // 5
$points     = $regression->getPoints();              // [[1,2], [2,3], [4,5], [5,7], [6,8]]
$xs         = $regression->getXs();                  // [1, 2, 4, 5, 6]
$ys         = $regression->getYs();                  // [2, 3, 5, 7, 8]
$ν          = $regression->degreesOfFreedom();

// Linear regression through a fixed point (least squares method)
$force_point = [0,0];
$regression  = new Regresion\LinearThroughPoint($points, $force_point);
$parameters  = $regression->getParameters();
$equation    = $regression->getEquation();
$y           = $regression->evaluate(5);
$Ŷ           = $regression->yHat();
$r           = $regression->r();
$          = $regression->r2();
 ⋮                     ⋮

// Theil–Sen estimator (Sen's slope estimator, Kendall–Theil robust line)
$regression  = new Regresion\TheilSen($points);
$parameters  = $regression->getParameters();
$equation    = $regression->getEquation();
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Use Lineweaver-Burk linearization to fit data to the Michaelis–Menten model: y = (V * x) / (K + x)
$regression  = new Regresion\LineweaverBurk($points);
$parameters  = $regression->getParameters();  // [V, K]
$equation    = $regression->getEquation();    // y = Vx / (K + x)
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Use Hanes-Woolf linearization to fit data to the Michaelis–Menten model: y = (V * x) / (K + x)
$regression  = new Regresion\HanesWoolf($points);
$parameters  = $regression->getParameters();  // [V, K]
$equation    = $regression->getEquation();    // y = Vx / (K + x)
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Power law regression - power curve (least squares fitting)
$regression = new Regresion\PowerLaw($points);
$parameters = $regression->getParameters();   // [a => 56.483375436574, b => 0.26415375648621]
$equation   = $regression->getEquation();     // y = 56.483375436574x^0.26415375648621
$y          = $regression->evaluate(5);
 ⋮                     ⋮

// LOESS - Locally Weighted Scatterplot Smoothing (Local regression)
$α          = 1/3;                         // Smoothness parameter
$λ          = 1;                           // Order of the polynomial fit
$regression = new Regresion\LOESS($points, $α, $λ);
$y          = $regression->evaluate(5);
$Ŷ          = $regression->yHat();
 ⋮                     ⋮

Statistics - Significance Testing

use MathPHP\Statistics\Significance;

// Z test (z and p values)
$Hₐ = 20;   // Alternate hypothesis (M Sample mean)
$n  = 200;  // Sample size
$H₀ = 19.2; // Null hypothesis (μ Population mean)
$σ  = 6;    // SD of population (Standard error of the mean)
$z  = Significance:zTest($Hₐ, $n, $H₀, $σ);
/* [
  'z'  => 1.88562, // Z score
  'p1' => 0.02938, // one-tailed p value
  'p2' => 0.0593,  // two-tailed p value
] */

// Z score
$M = 8; // Sample mean
$μ = 7; // Population mean
$σ = 1; // Population SD
$z = Significance::zScore($μ, $σ, $x);

// T test - One sample (t and p values)
$Hₐ = 280; //Alternate hypothesis (M Sample mean)
$s  = 50;  // SD of sample
$n  = 15;  // Sample size
$H₀ = 300; // Null hypothesis (μ₀ Population mean)
$t  = Significance::tTestOneSample($Hₐ, $s, $n, $H);
/* [
  't'  => -1.549, // t score
  'p1' => 0.0718, // one-tailed p value
  'p2' => 0.1437, // two-tailed p value
] */

// T test - Two samples (t and p values)
$μ₁ = 42.14; // Sample mean of population 1
$μ₂ = 43.23; // Sample mean of population 2
$n₁ = 10;    // Sample size of population 1
$n₂ = 10;    // Sample size of population 2
$σ₁ = 0.683; // Standard deviation of sample mean 1
$σ₂ = 0.750; // Standard deviation of sample mean 2
$t  = Significance::tTestTwoSample($μ₁, $μ₂, $n₁, $n₂, $σ₁, $σ₂);
/* [
  't'  => -3.3978,  // t score
  'p1' => 0.001604, // one-tailed p value
  'p2' => 0.181947, // two-tailed p value
] */

// T score
$Hₐ = 280; //Alternate hypothesis (M Sample mean)
$s  = 50;  // SD of sample
$n  = 15;  // Sample size
$H₀ = 300; // Null hypothesis (μ₀ Population mean)
$t  = Significance::tScore($Hₐ, $s, $n, $H);

// χ² test (chi-squared goodness of fit test)
$observed = [4, 6, 17, 16, 8, 9];
$expected = [10, 10, 10, 10, 10, 10];
$χ²       = Significance::chiSquaredTest($observed, $expected);
// ['chi-square' => 14.2, 'p' => 0.014388]

Unit Tests

$ cd tests
$ phpunit

Coverage Status Build Status

Standards

Math PHP conforms to the following standards:

License

Math PHP is licensed under the MIT License.

About

Powerful modern math library for PHP: Features descriptive statistics and regressions; Continuous and discrete probability distributions; Linear algebra with matrices and vectors, Numerical analysis; special mathematical functions; Algebra

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • PHP 100.0%