You can download the preprocessed sample dataset for this demo via our Google Drive sharing link.
Use the following commands to install prerequisites.
# assuming using cuda 11.3
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip install colossalai==0.1.9+torch1.11cu11.3 -f https://release.colossalai.org
Use the following commands to execute training.
#!/usr/bin/env sh
export DATA=/path/to/small-gpt-dataset.json'
# run on a single node
colossalai run --nproc_per_node=<num_gpus> train_gpt.py --config configs/<config_file> --from_torch
# run on multiple nodes with slurm
colossalai run --nproc_per_node=<num_gpus> \
--master_addr <hostname> \
--master_port <port-number> \
--hosts <list-of-hostname-separated-by-comma> \
train_gpt.py \
--config configs/<config_file> \
--from_torch
# run on multiple nodes with slurm
srun python \
train_gpt.py \
--config configs/<config_file> \
--host <master_node>
You can set the <config_file>
to any file in the configs
folder. To simply get it running, you can start with gpt_small_zero3_pp1d.py
on a single node first. You can view the explanations in the config file regarding how to change the parallel setting.