Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test_adam use tqdm and update default n_events #13

Merged
merged 1 commit into from
Jul 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion colo_nvme/offload.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@


class DiskOffloader(Offloader):
def __init__(self, dir_name: str, n_entries: int = 128, backend: str = 'uring') -> None:
def __init__(self, dir_name: str, n_entries: int = 16, backend: str = 'uring') -> None:
assert backend in ('uring', 'aio')
if not os.path.exists(dir_name):
os.mkdir(dir_name)
Expand Down
28 changes: 18 additions & 10 deletions tests/test_adam.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,12 @@
import torch.nn as nn
from colo_nvme import DiskOffloader
from transformers import GPT2Config, GPT2LMHeadModel
from time import time
from typing import Optional
from tqdm import tqdm


N_WARMUP = 5
N_ACTIVATE = 10
N_WARMUP = 2
N_ACTIVATE = 3


class GPTLMModel(nn.Module):
Expand All @@ -33,6 +33,14 @@ def gpt2_xl(checkpoint=False):
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=16, checkpoint=checkpoint)


def gpt2_8b(checkpoint=False):
return GPTLMModel(hidden_size=4096, num_layers=90, num_attention_heads=16, checkpoint=checkpoint)


def gpt2_20b(checkpoint=False):
return GPTLMModel(hidden_size=8192, num_layers=25, num_attention_heads=16, checkpoint=checkpoint)


def adam(step, lr, param, grad, exp_avg, exp_avg_sq, beta1=0.9, beta2=0.999, eps=1e-12):
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
Expand Down Expand Up @@ -142,20 +150,20 @@ def _post_step(self, idx, params):
def run_adam(model: torch.nn.Module, nvme_offload: bool, backend: str, prefetch: int, vecio: bool):
offloader = None
if nvme_offload:
offloader = DiskOffloader('.', backend=backend)
offloader = DiskOffloader('.', 8, backend=backend)
optimizer = Adam(model.parameters(), 1e-3, offloader=offloader, prefetch=prefetch, vecio=vecio)
for p in model.parameters():
p.grad = torch.rand_like(p)
for _ in range(N_WARMUP):
optimizer.step()
start = time()
for _ in range(N_ACTIVATE):
optimizer.step()
dur = time() - start
if not nvme_offload:
print(f'CPU: time={dur/N_ACTIVATE:.3f}')
desc = 'CPU'
postfix = None
else:
print(f'NVME offload: backend={backend}, prefetch={prefetch}, vecio={vecio}, time={dur/N_ACTIVATE:.3f}')
desc = 'NVME'
postfix = {'backend': backend, 'prefetch': prefetch, 'vecio': vecio}
for _ in tqdm(range(N_ACTIVATE), desc=desc, postfix=postfix):
optimizer.step()


if __name__ == '__main__':
Expand Down