Skip to content

hrushabhchouhan/sentiment-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An Explainer App for Fine Grained Sentiment Classification

This repo contains an initial prototype of an interactive application written in Flask, that explains the results of fine-grained sentiment classification, described in detail in this Medium Series.

A number of classifiers are implemented and their results explained using the LIME explainer. The classifers were trained on the Stanford Sentiment Treebank (SST-5) dataset. The class labels are any of [1, 2, 3, 4, 5], where 1 is very negative and 5 is very positive.

Installation

First, set up virtual environment and install from requirements.txt:

python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt

For further development, simply activate the existing virtual environment.

source venv/bin/activate

Usage

Run the file app.py and then enter a sentence, choose a type of classifier and click on the button Explain results!. We can then observe the features (i.e. words or tokens) that contributed to the classifier predicting a particular class label.

Demo for the front-end

The front-end app takes in a text sample and outputs LIME explanations for the different methods. The app is is deployed using Heroku at this location: https://sst5-explainer.herokuapp.com/

Play with your own text examples as shown below and see the fine-grained sentiment results explained!

NOTE: Because the PyTorch-based models (Flair and the causal transformer) are quite expensive to run inference with (they require a GPU), these methods are not deployed.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published