Skip to content

[AAAI 2023] Contrastive Masked Autoencoders for Self-Supervised Video Hashing

Notifications You must be signed in to change notification settings

huangmozhi9527/ConMH

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contrastive Masked Autoencoders for Self-Supervised Video Hashing

This repository is the official PyTorch implementation of our AAAI 2023 paper Contrastive Masked Autoencoders for Self-Supervised Video Hashing.

Catalogue

Getting Started

1. Clone this repository:

git clone https://github.com/haungmozhi9527/ConMH.git
cd ConMH

2. Create a conda environment and install the dependencies:

conda create -n conmh python=3.6
conda activate conmh
conda install pytorch==1.6.0 cudatoolkit=10.1 -c pytorch -c conda-forge
pip install -r requirements.txt

3. Download Datasets: VGG features of FCVID and YFCC are kindly uploaded by the authors of SSVH. ResNet50 features of ActivityNet are kindly provided by the authors of BTH. You can download them from Baiduyun disk.

Dataset Link
FCVID Baidu disk
ActivityNet Baidu disk
YFCC Baidu disk

4. Set data_root and home_root in config files (e.g., ./configs/conmh_fcv.py).

Train

To train ConMH on FCVID:

python train.py --gpu 0 --config configs/conmh_fcv.py

To train ConMH on ActivityNet:

python train.py --gpu 0 --config configs/conmh_act.py

To train ConMH on YFCC:

python train.py --gpu 0 --config configs/conmh_yfcc.py

Test

To test ConMH on FCVID:

python eval.py --gpu 0 --config configs/conmh_fcv.py

To test ConMH on ActivityNet:

python eval.py --gpu 0 --config configs/conmh_act.py

To test ConMH on YFCC:

python eval.py --gpu 0 --config configs/conmh_yfcc.py

Trained Models

We provide trained ConMH checkpoints. You can download them from Baiduyun disk.

Dataset 16 bits 32 bits 64 bits
FCVID Baidu disk Baidu disk Baidu disk
ActivityNet Baidu disk Baidu disk Baidu disk
YFCC Baidu disk Baidu disk Baidu disk

Results

Quantitative Results

For this repository, the expected performance is:

Dataset Bits mAP@5 mAP@20 mAP@40 mAP@60 mAP@80 mAP@100
FCVID 16 0.350 0.252 0.216 0.196 0.181 0.169
FCVID 32 0.476 0.332 0.287 0.263 0.245 0.230
FCVID 64 0.524 0.373 0.326 0.301 0.283 0.267
ActivityNet 16 0.156 0.081 0.050 0.036 0.029 0.024
ActivityNet 32 0.229 0.124 0.075 0.054 0.042 0.035
ActivityNet 64 0.267 0.150 0.092 0.066 0.051 0.042
YFCC 16 0.225 0.146 0.122 0.113 0.108 0.104
YFCC 32 0.341 0.182 0.148 0.135 0.128 0.123
YFCC 64 0.368 0.194 0.158 0.143 0.135 0.130

Citation

If you find this repository useful, please consider citing our work:

@inproceedings{wang2023contrastive,
  title={Contrastive Masked Autoencoders for Self-Supervised Video Hashing},
  author={Wang, Yuting and Wang, Jinpeng and Chen, Bin and Zeng, Ziyun and Xia, Shu-Tao},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={37},
  number={3},
  pages={2733--2741},
  year={2023}
}

About

[AAAI 2023] Contrastive Masked Autoencoders for Self-Supervised Video Hashing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages