Skip to content

Commit

Permalink
fix: add pad token when not present
Browse files Browse the repository at this point in the history
Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
  • Loading branch information
kmehant committed Dec 13, 2024
1 parent 4923481 commit 3d8eeca
Show file tree
Hide file tree
Showing 2 changed files with 263 additions and 0 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name:
model_name (`str`, *optional*):
"""
tokenizer = AutoTokenizer.from_pretrained(model_name)

datasets = load_dataset("glue", "mrpc")

def tokenize_function(examples):
Expand Down Expand Up @@ -93,6 +94,10 @@ def training_function(config, args):
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True)

if args.add_pad_token:
if model.config.pad_token_id is None:
model.config.pad_token_id = 0

# Instantiate optimizer
optimizer_cls = (
AdamW
Expand Down Expand Up @@ -243,6 +248,12 @@ def main():
default=3,
help="Number of train epochs.",
)
parser.add_argument(
"--add_pad_token",
type=bool,
default=False,
help="To add pad token if not exists.",
)
args = parser.parse_args()
config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(config, args)
Expand Down
252 changes: 252 additions & 0 deletions src/accelerate/test_utils/scripts/test_tp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
from pathlib import Path

import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, get_linear_schedule_with_warmup, set_seed

from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler


MAX_GPU_BATCH_SIZE = 16
EVAL_BATCH_SIZE = 32


def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"):
"""
Creates a set of `DataLoader`s for the `glue` dataset.
Args:
accelerator (`Accelerator`):
An `Accelerator` object
batch_size (`int`, *optional*):
The batch size for the train and validation DataLoaders.
model_name (`str`, *optional*):
"""
tokenizer = AutoTokenizer.from_pretrained(model_name)
datasets = load_dataset("glue", "mrpc")

def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs

# Apply the method we just defined to all the examples in all the splits of the dataset
tokenized_datasets = datasets.map(
tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False
)

# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.XLA:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")

# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
)

return train_dataloader, eval_dataloader


def training_function(config, args):
# Initialize accelerator
accelerator = Accelerator()

# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lr = config["lr"]
num_epochs = int(config["num_epochs"])
seed = int(config["seed"])
batch_size = int(config["batch_size"])
model_name = args.model_name_or_path

set_seed(seed)
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name)

# Instantiate the model (we build the model here so that the seed also control new weights initialization)
model = AutoModelForCausalLM.from_pretrained(model_name, return_dict=True)

# Instantiate optimizer
optimizer_cls = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
optimizer = optimizer_cls(params=model.parameters(), lr=lr)

max_training_steps = len(train_dataloader) * num_epochs

# Instantiate scheduler
linear_decay_scheduler = False
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=max_training_steps,
)
linear_decay_scheduler = True
else:
lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0)

# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)

# We also need to keep track of the stating epoch so files are named properly
starting_epoch = 0

# Now we train the model
metric = evaluate.load("glue", "mrpc")
best_performance = 0
performance_metric = {}
expected_lr_after_first_optim_step = lr * (
1 - 1 / (max_training_steps / accelerator.num_processes / accelerator.gradient_accumulation_steps)
)
lr_scheduler_check_completed = False
for epoch in range(starting_epoch, num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

# assert the learning rate after first optimizer step
if (
accelerator.sync_gradients
and not lr_scheduler_check_completed
and linear_decay_scheduler
and accelerator.state.mixed_precision == "no"
):
assert (
lr_scheduler.get_last_lr()[0] == expected_lr_after_first_optim_step
), f"Wrong lr found at second step, expected {expected_lr_after_first_optim_step}, got {lr_scheduler.get_last_lr()[0]}"
lr_scheduler_check_completed = True

model.eval()
samples_seen = 0
for step, batch in enumerate(eval_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
# It is slightly faster to call this once, than multiple times
predictions, references = accelerator.gather(
(predictions, batch["labels"])
) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(eval_dataloader) - 1:
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
references = references[: len(eval_dataloader.dataset) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=predictions,
references=references,
)

eval_metric = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:", eval_metric)
performance_metric[f"epoch-{epoch}"] = eval_metric["accuracy"]

if best_performance < eval_metric["accuracy"]:
best_performance = eval_metric["accuracy"]

# check that the LR is 0
if linear_decay_scheduler and accelerator.state.mixed_precision == "no":
assert (
lr_scheduler.get_last_lr()[0] == 0
), f"Wrong lr found at last step, expected 0, got {lr_scheduler.get_last_lr()[0]}"

if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"

accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump(performance_metric, f)

# Finally try saving the model
accelerator.save_model(model, args.output_dir)
accelerator.wait_for_everyone()
assert Path(
args.output_dir, "model.safetensors"
).exists(), "Model was not saved when calling `Accelerator.save_model`"
accelerator.end_training()


def main():
parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.")
parser.add_argument(
"--model_name_or_path",
type=str,
default="bert-base-cased",
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=False,
)
parser.add_argument(
"--output_dir",
type=str,
default=".",
help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.",
)
parser.add_argument(
"--performance_lower_bound",
type=float,
default=None,
help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.",
)
parser.add_argument(
"--num_epochs",
type=int,
default=3,
help="Number of train epochs.",
)
args = parser.parse_args()
config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(config, args)


if __name__ == "__main__":
main()

0 comments on commit 3d8eeca

Please sign in to comment.