-
Notifications
You must be signed in to change notification settings - Fork 776
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add ch7 at _toctree and translate 7.1 (#222)
- Loading branch information
Showing
2 changed files
with
38 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
<FrameworkSwitchCourse {fw} /> | ||
|
||
# Introdução | ||
|
||
No [Capítulo 3](/course/chapter3), você viu como fazer o ajuste fino (fine-tune) de um modelo de classificação de texto. Neste capítulo, abordaremos as seguintes tarefas de NLP (também conhecido como PLN): | ||
|
||
- Classificação dos Tokens | ||
- Modelagem de linguagem mascarada (como BERT) | ||
- Sumarização | ||
- Tradução | ||
- Modelagem de linguagem causal pré-treinamento (como GPT-2) | ||
- Responder perguntas | ||
|
||
{#if fw === 'pt'} | ||
|
||
Para fazer isso, terá de aproveitar tudo o que aprendeu sobre a API `Trainer` e a biblioteca 🤗 Accelerate no [Capítulo 3](/course/chapter3), a biblioteca 🤗 Datasets no [Capítulo 5](/course/chapter5), e a biblioteca 🤗 Tokenizers no [Capítulo 6](/course/chapter6). Também vamos fazer o upload dos nossos resultados para o Model Hub, assim como fizemos no [Capítulo 4](/course/chapter4), então realmente esse é o capítulo onde tudo se junta! | ||
|
||
Cada seção pode ser lida de forma independente e irá mostrar como treinar um modelo com a API `Trainer` ou com o seu próprio laço de treinamento, utilizando 🤗 Accelerate. Sinta-se à vontade para pular qualquer parte e se concentrar na que mais lhe interessa: a API `Trainer` é excelente para o ajuste fino ou para treinar o seu modelo sem se preocupar com o que se passa nos bastidores, enquanto que o laço de treinamento com `Accelerate` permite personalizar qualquer parte que queira com mais facilidade. | ||
|
||
{:else} | ||
|
||
Para fazer isso, terá de aproveitar tudo o que aprendeu sobre o treinamento de modelo com a API Keras no [Capítulo 3](/course/chapter3), a biblioteca 🤗 Datasets no [Capítulo 5](/course/chapter5), e a biblioteca 🤗 Tokenizers no [Capítulo 6](/course/chapter6). Também vamos fazer o upload dos nossos resultados para o Model Hub, assim como fizemos no [Capítulo 4](/course/chapter4), então realmente esse é o capítulo onde tudo se junta! | ||
|
||
Cada seção pode ser lida de forma independente. | ||
|
||
{/if} | ||
|
||
|
||
<Tip> | ||
|
||
Se ler as seções em sequência, notará que elas têm bastante código e texto em comum. Essa repetição é intencional para que possa mergulhar (ou voltar mais tarde) em qualquer tarefa que lhe interesse e encontrar um exemplo completo. | ||
|
||
</Tip> |