Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs(zh-cn): Reviewed 58_what-is-domain-adaptation.srt #405

Merged
merged 1 commit into from
Dec 12, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 29 additions & 29 deletions subtitles/zh-CN/58_what-is-domain-adaptation.srt
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@

4
00:00:05,910 --> 00:00:07,923
- 什么是领域适应
- 什么是域适配
- What is domain adaptation?

5
Expand All @@ -25,12 +25,12 @@ When fine-tuning a pre-trained model on a new dataset,

6
00:00:12,540 --> 00:00:15,480
我们获得的微调模型将做出预测
我们适配新的数据集所获得的微调模型
the fine-tuned model we obtain will make predictions

7
00:00:15,480 --> 00:00:17,433
适应这个新数据集
将做出预测
that are attuned to this new dataset.

8
Expand All @@ -40,47 +40,47 @@ When the two models are trained with the same task,

9
00:00:21,840 --> 00:00:25,320
然后我们可以比较他们对相同输入的预测
我们可以使用相同的输入比较他们的预测结果
we can then compare their predictions on the same input.

10
00:00:25,320 --> 00:00:27,870
两个模型的预测会有所不同
两个模型的预测结果
The predictions of the two models will be different

11
00:00:27,870 --> 00:00:29,790
以反映差异的方式
会以一种方式反映
in a way that reflects the differences

12
00:00:29,790 --> 00:00:31,680
在两个数据集之间,
两个数据集之间的差别
between the two datasets,

13
00:00:31,680 --> 00:00:34,053
我们称之为领域适应的现象
就是我们称之为域适配的现象
a phenomenon we call domain adaptation.

14
00:00:35,310 --> 00:00:38,640
让我们看一个带有掩码语言建模的例子
让我们通过带有版本微调
Let's look at an example with masked language modeling

15
00:00:38,640 --> 00:00:41,910
通过比较预训练的 DistilBERT 模型的输出
比较预训练的 DistilBERT 模型的输出
by comparing the outputs of the pre-trained DistilBERT model

16
00:00:41,910 --> 00:00:43,080
版本微调
看一个和掩码语言建模相关的例子
with the version fine-tuned

17
00:00:43,080 --> 00:00:45,273
在课程的第 7 章中,链接如下。
该内容在课程的第 7 章中,链接如下。
in chapter 7 of the course, linked below.

18
Expand All @@ -100,27 +100,27 @@ has its first two predictions linked to cinema.

21
00:00:54,390 --> 00:00:57,210
由于它在电影评论数据集上进行了微调
由于它是基于电影评论数据集上进行了微调
Since it was fine-tuned on a movie reviews dataset,

22
00:00:57,210 --> 00:00:58,680
看到是完全正常的
因此它像这样调整它的推荐结果
it's perfectly normal to see

23
00:00:58,680 --> 00:01:01,440
它像这样调整了它的建议
是完全正常的
it adapted its suggestions like this.

24
00:01:01,440 --> 00:01:03,090
注意它如何保持相同的预测
注意它作为之后的预训练模型
Notice how it keeps the same prediction

25
00:01:03,090 --> 00:01:05,220
作为之后的预训练模型
如何保持相同的预测
as the pre-trained model afterward.

26
Expand All @@ -130,7 +130,7 @@ Even if the fine-tuned model adapts to the new dataset,

27
00:01:08,100 --> 00:01:10,450
它不会忘记预先训练的内容
它不会遗失预先训练的内容
it's not forgetting what it was pre-trained on.

28
Expand All @@ -140,57 +140,57 @@ This is another example on a translation task.

29
00:01:14,220 --> 00:01:17,310
最重要的是,我们使用预训练的法语 / 英语模型,
在上面的代码里,我们使用预训练的法语 / 英语模型,
On top, we use a pre-trained French/English model,

30
00:01:17,310 --> 00:01:21,330
在底部,我们在第 7 章中微调的版本。
在下面的代码里,是我们在第 7 章中微调的版本。
and at the bottom, the version we fine-tuned in chapter 7.

31
00:01:21,330 --> 00:01:23,610
顶级模型在大量文本上进行了预训练
上面的模型在大量文本上进行了预训练
The top model is pre-trained on lots of texts,

32
00:01:23,610 --> 00:01:25,170
并留下技术英语术语
并保留了英文中的技术术语
and leaves technical English terms,

33
00:01:25,170 --> 00:01:28,350
像插件和电子邮件,翻译不变
像 plugin 和 email 这样的单词,是不会被翻译的
like plugin and email, unchanged in the translation.

34
00:01:28,350 --> 00:01:31,350
两者都被法国人完全理解
法国用户都可以很好地理解两者
Both are perfectly understood by French people.

35
00:01:31,350 --> 00:01:33,780
为微调选择的数据集是一个数据集
为微调模型选择的数据集是
The dataset picked for the fine-tuning is a dataset

36
00:01:33,780 --> 00:01:36,660
特别注意的技术文本
一个包含技术文本的数据集
of technical texts where special attention was picked

37
00:01:36,660 --> 00:01:39,150
用法语翻译一切
其中特别将所有内容都翻译为法语
on translating everything in French.

38
00:01:39,150 --> 00:01:42,090
结果,经过微调的模型选择了那个习惯
结果,经过微调的模型适应了该特征
As a result, the fine-tuned model picked that habit

39
00:01:42,090 --> 00:01:44,193
并翻译了插件和电子邮件
并翻译了 plugin 和 email 两个词
and translated both plugin and email.

40
Expand Down