Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Iterable torch formatting #5852

Merged
merged 18 commits into from
Jun 13, 2023
Merged

Iterable torch formatting #5852

merged 18 commits into from
Jun 13, 2023

Conversation

lhoestq
Copy link
Member

@lhoestq lhoestq commented May 12, 2023

Used the TorchFormatter to get torch tensors in iterable dataset with format set to "torch".

It uses the data from Arrow if possible, otherwise applies recursive_tensorize.

When set back to format_type=None, cast_to_python_objects is used.

requires #5821

close #5793

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006567 / 0.011353 (-0.004786) 0.004479 / 0.011008 (-0.006530) 0.028286 / 0.038508 (-0.010222) 0.033137 / 0.023109 (0.010028) 0.305249 / 0.275898 (0.029351) 0.330306 / 0.323480 (0.006826) 0.003747 / 0.007986 (-0.004238) 0.004409 / 0.004328 (0.000081) 0.004742 / 0.004250 (0.000491) 0.040780 / 0.037052 (0.003728) 0.302879 / 0.258489 (0.044390) 0.346880 / 0.293841 (0.053039) 0.032908 / 0.128546 (-0.095638) 0.010617 / 0.075646 (-0.065029) 0.257996 / 0.419271 (-0.161275) 0.051044 / 0.043533 (0.007511) 0.306113 / 0.255139 (0.050974) 0.324444 / 0.283200 (0.041244) 0.100820 / 0.141683 (-0.040863) 1.478402 / 1.452155 (0.026248) 1.599398 / 1.492716 (0.106682)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.216540 / 0.018006 (0.198534) 0.433480 / 0.000490 (0.432991) 0.004032 / 0.000200 (0.003832) 0.000084 / 0.000054 (0.000029)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027807 / 0.037411 (-0.009604) 0.107225 / 0.014526 (0.092699) 0.120157 / 0.176557 (-0.056400) 0.174130 / 0.737135 (-0.563005) 0.128902 / 0.296338 (-0.167437)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.395996 / 0.215209 (0.180787) 3.936254 / 2.077655 (1.858599) 1.808864 / 1.504120 (0.304744) 1.608935 / 1.541195 (0.067741) 1.646427 / 1.468490 (0.177937) 0.716026 / 4.584777 (-3.868751) 3.815045 / 3.745712 (0.069333) 2.271534 / 5.269862 (-2.998327) 1.548728 / 4.565676 (-3.016948) 0.076743 / 0.424275 (-0.347532) 0.011575 / 0.007607 (0.003968) 0.499202 / 0.226044 (0.273158) 4.983754 / 2.268929 (2.714825) 2.239319 / 55.444624 (-53.205306) 1.919427 / 6.876477 (-4.957050) 2.019664 / 2.142072 (-0.122408) 0.866318 / 4.805227 (-3.938910) 0.157309 / 6.500664 (-6.343355) 0.063341 / 0.075469 (-0.012128)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.180817 / 1.841788 (-0.660971) 14.579869 / 8.074308 (6.505561) 14.277848 / 10.191392 (4.086456) 0.182560 / 0.680424 (-0.497863) 0.017402 / 0.534201 (-0.516799) 0.411549 / 0.579283 (-0.167734) 0.432938 / 0.434364 (-0.001426) 0.545067 / 0.540337 (0.004730) 0.642173 / 1.386936 (-0.744763)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006753 / 0.011353 (-0.004600) 0.004590 / 0.011008 (-0.006418) 0.006111 / 0.038508 (-0.032397) 0.032763 / 0.023109 (0.009654) 0.401001 / 0.275898 (0.125103) 0.428063 / 0.323480 (0.104583) 0.003730 / 0.007986 (-0.004255) 0.004617 / 0.004328 (0.000289) 0.004770 / 0.004250 (0.000519) 0.049718 / 0.037052 (0.012666) 0.399724 / 0.258489 (0.141235) 0.440292 / 0.293841 (0.146451) 0.032846 / 0.128546 (-0.095700) 0.010842 / 0.075646 (-0.064804) 0.012642 / 0.419271 (-0.406630) 0.046043 / 0.043533 (0.002510) 0.390862 / 0.255139 (0.135723) 0.407027 / 0.283200 (0.123828) 0.099349 / 0.141683 (-0.042334) 1.455739 / 1.452155 (0.003584) 1.572214 / 1.492716 (0.079497)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.227186 / 0.018006 (0.209180) 0.447404 / 0.000490 (0.446914) 0.000400 / 0.000200 (0.000200) 0.000055 / 0.000054 (0.000000)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029830 / 0.037411 (-0.007581) 0.112365 / 0.014526 (0.097839) 0.125736 / 0.176557 (-0.050821) 0.174781 / 0.737135 (-0.562354) 0.129439 / 0.296338 (-0.166900)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.444438 / 0.215209 (0.229229) 4.459381 / 2.077655 (2.381726) 2.264541 / 1.504120 (0.760421) 2.075257 / 1.541195 (0.534062) 2.181289 / 1.468490 (0.712799) 0.725279 / 4.584777 (-3.859498) 3.863253 / 3.745712 (0.117541) 2.132498 / 5.269862 (-3.137364) 1.402003 / 4.565676 (-3.163673) 0.084268 / 0.424275 (-0.340007) 0.011762 / 0.007607 (0.004155) 0.556239 / 0.226044 (0.330194) 5.617998 / 2.268929 (3.349070) 2.754789 / 55.444624 (-52.689835) 2.418418 / 6.876477 (-4.458059) 2.479696 / 2.142072 (0.337624) 0.870037 / 4.805227 (-3.935190) 0.160480 / 6.500664 (-6.340184) 0.064464 / 0.075469 (-0.011005)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.290916 / 1.841788 (-0.550872) 14.783173 / 8.074308 (6.708865) 13.355883 / 10.191392 (3.164491) 0.169963 / 0.680424 (-0.510461) 0.017657 / 0.534201 (-0.516544) 0.409218 / 0.579283 (-0.170065) 0.422942 / 0.434364 (-0.011422) 0.494968 / 0.540337 (-0.045369) 0.587044 / 1.386936 (-0.799892)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented May 24, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007183 / 0.011353 (-0.004169) 0.004586 / 0.011008 (-0.006423) 0.032668 / 0.038508 (-0.005840) 0.040896 / 0.023109 (0.017787) 0.358225 / 0.275898 (0.082327) 0.395063 / 0.323480 (0.071583) 0.004540 / 0.007986 (-0.003446) 0.003849 / 0.004328 (-0.000480) 0.005521 / 0.004250 (0.001271) 0.053314 / 0.037052 (0.016262) 0.362417 / 0.258489 (0.103928) 0.414337 / 0.293841 (0.120496) 0.030698 / 0.128546 (-0.097849) 0.008823 / 0.075646 (-0.066823) 0.303583 / 0.419271 (-0.115689) 0.060277 / 0.043533 (0.016744) 0.365938 / 0.255139 (0.110799) 0.379554 / 0.283200 (0.096354) 0.122545 / 0.141683 (-0.019138) 1.712098 / 1.452155 (0.259943) 1.802036 / 1.492716 (0.309319)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.239508 / 0.018006 (0.221502) 0.492194 / 0.000490 (0.491704) 0.003280 / 0.000200 (0.003081) 0.000096 / 0.000054 (0.000042)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.033301 / 0.037411 (-0.004110) 0.125851 / 0.014526 (0.111325) 0.137757 / 0.176557 (-0.038799) 0.207603 / 0.737135 (-0.529533) 0.143507 / 0.296338 (-0.152831)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.470662 / 0.215209 (0.255453) 4.736017 / 2.077655 (2.658363) 2.154152 / 1.504120 (0.650032) 1.954243 / 1.541195 (0.413048) 2.080186 / 1.468490 (0.611696) 0.622884 / 4.584777 (-3.961893) 4.385885 / 3.745712 (0.640173) 2.262085 / 5.269862 (-3.007776) 1.454215 / 4.565676 (-3.111462) 0.067342 / 0.424275 (-0.356933) 0.012913 / 0.007607 (0.005306) 0.600676 / 0.226044 (0.374631) 5.915093 / 2.268929 (3.646164) 2.664915 / 55.444624 (-52.779709) 2.286986 / 6.876477 (-4.589490) 2.387776 / 2.142072 (0.245704) 0.757067 / 4.805227 (-4.048160) 0.154625 / 6.500664 (-6.346039) 0.074632 / 0.075469 (-0.000838)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.413229 / 1.841788 (-0.428558) 17.433012 / 8.074308 (9.358704) 16.980340 / 10.191392 (6.788948) 0.218943 / 0.680424 (-0.461481) 0.020525 / 0.534201 (-0.513676) 0.451847 / 0.579283 (-0.127436) 0.495587 / 0.434364 (0.061223) 0.548739 / 0.540337 (0.008402) 0.662120 / 1.386936 (-0.724816)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006775 / 0.011353 (-0.004577) 0.004556 / 0.011008 (-0.006452) 0.006462 / 0.038508 (-0.032046) 0.039073 / 0.023109 (0.015964) 0.429249 / 0.275898 (0.153351) 0.469946 / 0.323480 (0.146467) 0.004402 / 0.007986 (-0.003584) 0.003798 / 0.004328 (-0.000530) 0.005347 / 0.004250 (0.001097) 0.053743 / 0.037052 (0.016691) 0.434635 / 0.258489 (0.176146) 0.475661 / 0.293841 (0.181820) 0.029891 / 0.128546 (-0.098656) 0.009058 / 0.075646 (-0.066588) 0.010987 / 0.419271 (-0.408284) 0.053877 / 0.043533 (0.010344) 0.434428 / 0.255139 (0.179289) 0.449637 / 0.283200 (0.166437) 0.124331 / 0.141683 (-0.017352) 1.736083 / 1.452155 (0.283928) 1.831632 / 1.492716 (0.338916)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.248428 / 0.018006 (0.230422) 0.493113 / 0.000490 (0.492623) 0.000429 / 0.000200 (0.000229) 0.000057 / 0.000054 (0.000002)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031337 / 0.037411 (-0.006074) 0.132360 / 0.014526 (0.117834) 0.134734 / 0.176557 (-0.041822) 0.193811 / 0.737135 (-0.543324) 0.146883 / 0.296338 (-0.149456)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.510876 / 0.215209 (0.295666) 5.170198 / 2.077655 (3.092543) 2.572105 / 1.504120 (1.067985) 2.316918 / 1.541195 (0.775723) 2.449316 / 1.468490 (0.980826) 0.612219 / 4.584777 (-3.972558) 4.456740 / 3.745712 (0.711028) 2.099757 / 5.269862 (-3.170105) 1.293017 / 4.565676 (-3.272660) 0.067922 / 0.424275 (-0.356353) 0.013467 / 0.007607 (0.005860) 0.634240 / 0.226044 (0.408196) 6.373111 / 2.268929 (4.104182) 3.171567 / 55.444624 (-52.273057) 2.763411 / 6.876477 (-4.113066) 2.845557 / 2.142072 (0.703485) 0.763431 / 4.805227 (-4.041797) 0.155949 / 6.500664 (-6.344715) 0.076264 / 0.075469 (0.000795)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.468075 / 1.841788 (-0.373713) 17.582354 / 8.074308 (9.508046) 16.565964 / 10.191392 (6.374572) 0.163779 / 0.680424 (-0.516644) 0.020472 / 0.534201 (-0.513728) 0.444416 / 0.579283 (-0.134867) 0.488471 / 0.434364 (0.054107) 0.550661 / 0.540337 (0.010323) 0.667230 / 1.386936 (-0.719706)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006160 / 0.011353 (-0.005193) 0.004093 / 0.011008 (-0.006915) 0.056485 / 0.038508 (0.017977) 0.033637 / 0.023109 (0.010528) 0.296448 / 0.275898 (0.020550) 0.332532 / 0.323480 (0.009052) 0.003864 / 0.007986 (-0.004122) 0.003446 / 0.004328 (-0.000883) 0.034808 / 0.004250 (0.030558) 0.048567 / 0.037052 (0.011514) 0.296090 / 0.258489 (0.037601) 0.336067 / 0.293841 (0.042226) 0.026081 / 0.128546 (-0.102465) 0.007875 / 0.075646 (-0.067771) 0.286049 / 0.419271 (-0.133222) 0.050411 / 0.043533 (0.006878) 0.297016 / 0.255139 (0.041877) 0.320030 / 0.283200 (0.036830) 0.110374 / 0.141683 (-0.031308) 1.432470 / 1.452155 (-0.019684) 1.492479 / 1.492716 (-0.000238)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.262352 / 0.018006 (0.244346) 0.557956 / 0.000490 (0.557467) 0.010296 / 0.000200 (0.010096) 0.000315 / 0.000054 (0.000260)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028801 / 0.037411 (-0.008611) 0.109844 / 0.014526 (0.095318) 0.122333 / 0.176557 (-0.054224) 0.180571 / 0.737135 (-0.556564) 0.125990 / 0.296338 (-0.170348)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.401643 / 0.215209 (0.186434) 4.020993 / 2.077655 (1.943338) 1.815256 / 1.504120 (0.311136) 1.619579 / 1.541195 (0.078384) 1.708889 / 1.468490 (0.240398) 0.537847 / 4.584777 (-4.046930) 3.743331 / 3.745712 (-0.002381) 1.779891 / 5.269862 (-3.489970) 1.021423 / 4.565676 (-3.544253) 0.058869 / 0.424275 (-0.365406) 0.011826 / 0.007607 (0.004218) 0.499665 / 0.226044 (0.273621) 4.980928 / 2.268929 (2.712000) 2.285664 / 55.444624 (-53.158960) 1.936553 / 6.876477 (-4.939923) 2.090428 / 2.142072 (-0.051645) 0.655218 / 4.805227 (-4.150009) 0.133178 / 6.500664 (-6.367486) 0.062991 / 0.075469 (-0.012478)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.168895 / 1.841788 (-0.672892) 14.656773 / 8.074308 (6.582465) 13.737921 / 10.191392 (3.546529) 0.145383 / 0.680424 (-0.535041) 0.017614 / 0.534201 (-0.516587) 0.386499 / 0.579283 (-0.192784) 0.425626 / 0.434364 (-0.008738) 0.389572 / 0.540337 (-0.150766) 0.386753 / 1.386936 (-1.000183)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005998 / 0.011353 (-0.005355) 0.004265 / 0.011008 (-0.006743) 0.034743 / 0.038508 (-0.003766) 0.033929 / 0.023109 (0.010820) 0.405535 / 0.275898 (0.129636) 0.407235 / 0.323480 (0.083755) 0.003972 / 0.007986 (-0.004013) 0.003616 / 0.004328 (-0.000712) 0.035278 / 0.004250 (0.031027) 0.052990 / 0.037052 (0.015937) 0.405228 / 0.258489 (0.146739) 0.415007 / 0.293841 (0.121166) 0.025951 / 0.128546 (-0.102595) 0.007990 / 0.075646 (-0.067656) 0.040492 / 0.419271 (-0.378779) 0.049123 / 0.043533 (0.005591) 0.399282 / 0.255139 (0.144143) 0.384303 / 0.283200 (0.101103) 0.115234 / 0.141683 (-0.026448) 1.476904 / 1.452155 (0.024749) 1.627191 / 1.492716 (0.134475)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.209211 / 0.018006 (0.191205) 0.566718 / 0.000490 (0.566228) 0.002094 / 0.000200 (0.001894) 0.000104 / 0.000054 (0.000049)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030885 / 0.037411 (-0.006526) 0.110777 / 0.014526 (0.096251) 0.124382 / 0.176557 (-0.052174) 0.175081 / 0.737135 (-0.562054) 0.130263 / 0.296338 (-0.166075)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.448091 / 0.215209 (0.232882) 4.484404 / 2.077655 (2.406749) 2.278438 / 1.504120 (0.774318) 2.087933 / 1.541195 (0.546738) 2.186709 / 1.468490 (0.718219) 0.534822 / 4.584777 (-4.049955) 3.778229 / 3.745712 (0.032517) 3.312334 / 5.269862 (-1.957528) 1.557209 / 4.565676 (-3.008467) 0.058923 / 0.424275 (-0.365352) 0.011350 / 0.007607 (0.003743) 0.550470 / 0.226044 (0.324426) 5.480347 / 2.268929 (3.211419) 2.781709 / 55.444624 (-52.662915) 2.478729 / 6.876477 (-4.397748) 2.492001 / 2.142072 (0.349929) 0.652649 / 4.805227 (-4.152578) 0.131334 / 6.500664 (-6.369330) 0.065619 / 0.075469 (-0.009850)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.253998 / 1.841788 (-0.587790) 15.207433 / 8.074308 (7.133124) 14.627842 / 10.191392 (4.436450) 0.146947 / 0.680424 (-0.533477) 0.017533 / 0.534201 (-0.516668) 0.391627 / 0.579283 (-0.187656) 0.431113 / 0.434364 (-0.003251) 0.413886 / 0.540337 (-0.126451) 0.414483 / 1.386936 (-0.972453)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007741 / 0.011353 (-0.003612) 0.004584 / 0.011008 (-0.006424) 0.067869 / 0.038508 (0.029361) 0.041612 / 0.023109 (0.018503) 0.377878 / 0.275898 (0.101980) 0.421633 / 0.323480 (0.098153) 0.004614 / 0.007986 (-0.003371) 0.003824 / 0.004328 (-0.000504) 0.041479 / 0.004250 (0.037229) 0.053309 / 0.037052 (0.016256) 0.390147 / 0.258489 (0.131658) 0.437706 / 0.293841 (0.143865) 0.035951 / 0.128546 (-0.092595) 0.009231 / 0.075646 (-0.066415) 0.357572 / 0.419271 (-0.061699) 0.081332 / 0.043533 (0.037799) 0.370076 / 0.255139 (0.114937) 0.423653 / 0.283200 (0.140453) 0.141401 / 0.141683 (-0.000282) 1.722744 / 1.452155 (0.270589) 1.914668 / 1.492716 (0.421952)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.256568 / 0.018006 (0.238562) 0.512243 / 0.000490 (0.511753) 0.019913 / 0.000200 (0.019713) 0.000136 / 0.000054 (0.000082)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031742 / 0.037411 (-0.005670) 0.128537 / 0.014526 (0.114011) 0.139962 / 0.176557 (-0.036594) 0.210711 / 0.737135 (-0.526424) 0.147162 / 0.296338 (-0.149177)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.509518 / 0.215209 (0.294309) 5.083788 / 2.077655 (3.006134) 2.455381 / 1.504120 (0.951262) 2.208078 / 1.541195 (0.666883) 2.341807 / 1.468490 (0.873317) 0.580014 / 4.584777 (-4.004763) 4.599492 / 3.745712 (0.853780) 2.403249 / 5.269862 (-2.866612) 1.559177 / 4.565676 (-3.006500) 0.072846 / 0.424275 (-0.351429) 0.017327 / 0.007607 (0.009720) 0.627747 / 0.226044 (0.401703) 6.242586 / 2.268929 (3.973657) 2.982875 / 55.444624 (-52.461750) 2.588645 / 6.876477 (-4.287832) 2.765915 / 2.142072 (0.623843) 0.720455 / 4.805227 (-4.084772) 0.157474 / 6.500664 (-6.343190) 0.074295 / 0.075469 (-0.001174)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.540799 / 1.841788 (-0.300988) 18.054632 / 8.074308 (9.980324) 16.544036 / 10.191392 (6.352644) 0.201423 / 0.680424 (-0.479001) 0.020497 / 0.534201 (-0.513704) 0.496275 / 0.579283 (-0.083008) 0.547380 / 0.434364 (0.113017) 0.614605 / 0.540337 (0.074267) 0.749889 / 1.386936 (-0.637047)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006963 / 0.011353 (-0.004389) 0.004543 / 0.011008 (-0.006465) 0.039530 / 0.038508 (0.001022) 0.038420 / 0.023109 (0.015311) 0.454885 / 0.275898 (0.178987) 0.491731 / 0.323480 (0.168251) 0.004211 / 0.007986 (-0.003775) 0.003673 / 0.004328 (-0.000655) 0.038735 / 0.004250 (0.034484) 0.052085 / 0.037052 (0.015032) 0.448924 / 0.258489 (0.190435) 0.499254 / 0.293841 (0.205413) 0.030069 / 0.128546 (-0.098477) 0.009082 / 0.075646 (-0.066565) 0.047181 / 0.419271 (-0.372090) 0.054758 / 0.043533 (0.011225) 0.445035 / 0.255139 (0.189896) 0.475090 / 0.283200 (0.191891) 0.122641 / 0.141683 (-0.019042) 1.706514 / 1.452155 (0.254360) 1.855726 / 1.492716 (0.363010)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.246028 / 0.018006 (0.228022) 0.486382 / 0.000490 (0.485892) 0.003038 / 0.000200 (0.002838) 0.000107 / 0.000054 (0.000053)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034298 / 0.037411 (-0.003113) 0.135364 / 0.014526 (0.120838) 0.146102 / 0.176557 (-0.030455) 0.207997 / 0.737135 (-0.529139) 0.153119 / 0.296338 (-0.143219)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.528758 / 0.215209 (0.313549) 5.243303 / 2.077655 (3.165648) 2.617194 / 1.504120 (1.113074) 2.400740 / 1.541195 (0.859545) 2.534692 / 1.468490 (1.066202) 0.585825 / 4.584777 (-3.998952) 4.879766 / 3.745712 (1.134054) 2.377419 / 5.269862 (-2.892443) 1.460711 / 4.565676 (-3.104966) 0.075572 / 0.424275 (-0.348703) 0.013650 / 0.007607 (0.006042) 0.697103 / 0.226044 (0.471058) 6.444984 / 2.268929 (4.176055) 3.227662 / 55.444624 (-52.216963) 2.875163 / 6.876477 (-4.001314) 2.860953 / 2.142072 (0.718881) 0.718908 / 4.805227 (-4.086319) 0.158005 / 6.500664 (-6.342659) 0.077581 / 0.075469 (0.002112)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.653027 / 1.841788 (-0.188760) 18.789342 / 8.074308 (10.715034) 16.762678 / 10.191392 (6.571286) 0.238920 / 0.680424 (-0.441504) 0.020698 / 0.534201 (-0.513502) 0.512634 / 0.579283 (-0.066649) 0.542235 / 0.434364 (0.107871) 0.626634 / 0.540337 (0.086297) 0.753324 / 1.386936 (-0.633612)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005737 / 0.011353 (-0.005616) 0.003767 / 0.011008 (-0.007241) 0.097792 / 0.038508 (0.059284) 0.028466 / 0.023109 (0.005356) 0.317703 / 0.275898 (0.041805) 0.359512 / 0.323480 (0.036032) 0.003428 / 0.007986 (-0.004558) 0.002848 / 0.004328 (-0.001481) 0.075668 / 0.004250 (0.071418) 0.037165 / 0.037052 (0.000113) 0.329539 / 0.258489 (0.071050) 0.361365 / 0.293841 (0.067524) 0.024777 / 0.128546 (-0.103769) 0.008324 / 0.075646 (-0.067323) 0.317346 / 0.419271 (-0.101926) 0.043296 / 0.043533 (-0.000237) 0.315318 / 0.255139 (0.060179) 0.347641 / 0.283200 (0.064441) 0.089551 / 0.141683 (-0.052132) 1.506335 / 1.452155 (0.054180) 1.573931 / 1.492716 (0.081215)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.208041 / 0.018006 (0.190034) 0.428198 / 0.000490 (0.427708) 0.002568 / 0.000200 (0.002369) 0.000072 / 0.000054 (0.000018)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023745 / 0.037411 (-0.013667) 0.096256 / 0.014526 (0.081730) 0.104917 / 0.176557 (-0.071639) 0.164341 / 0.737135 (-0.572794) 0.107972 / 0.296338 (-0.188367)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.453995 / 0.215209 (0.238786) 4.546892 / 2.077655 (2.469238) 2.185498 / 1.504120 (0.681378) 1.989156 / 1.541195 (0.447962) 2.053443 / 1.468490 (0.584953) 0.559940 / 4.584777 (-4.024837) 3.420759 / 3.745712 (-0.324954) 1.771528 / 5.269862 (-3.498333) 1.139692 / 4.565676 (-3.425984) 0.067686 / 0.424275 (-0.356589) 0.011729 / 0.007607 (0.004122) 0.558001 / 0.226044 (0.331957) 5.583886 / 2.268929 (3.314957) 2.678726 / 55.444624 (-52.765899) 2.324127 / 6.876477 (-4.552350) 2.472805 / 2.142072 (0.330733) 0.663163 / 4.805227 (-4.142065) 0.134892 / 6.500664 (-6.365772) 0.066722 / 0.075469 (-0.008747)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.195200 / 1.841788 (-0.646587) 13.602517 / 8.074308 (5.528209) 14.036344 / 10.191392 (3.844952) 0.143759 / 0.680424 (-0.536665) 0.017215 / 0.534201 (-0.516986) 0.383749 / 0.579283 (-0.195534) 0.388229 / 0.434364 (-0.046134) 0.469366 / 0.540337 (-0.070971) 0.560408 / 1.386936 (-0.826528)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005953 / 0.011353 (-0.005400) 0.003840 / 0.011008 (-0.007168) 0.077481 / 0.038508 (0.038973) 0.028318 / 0.023109 (0.005209) 0.403991 / 0.275898 (0.128093) 0.433374 / 0.323480 (0.109894) 0.003572 / 0.007986 (-0.004414) 0.003033 / 0.004328 (-0.001295) 0.075873 / 0.004250 (0.071623) 0.039321 / 0.037052 (0.002269) 0.416790 / 0.258489 (0.158301) 0.459368 / 0.293841 (0.165527) 0.025270 / 0.128546 (-0.103276) 0.008574 / 0.075646 (-0.067072) 0.083376 / 0.419271 (-0.335896) 0.043206 / 0.043533 (-0.000327) 0.404831 / 0.255139 (0.149692) 0.418559 / 0.283200 (0.135360) 0.099135 / 0.141683 (-0.042548) 1.501315 / 1.452155 (0.049160) 1.583912 / 1.492716 (0.091195)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.241510 / 0.018006 (0.223504) 0.410473 / 0.000490 (0.409983) 0.001857 / 0.000200 (0.001657) 0.000081 / 0.000054 (0.000027)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025366 / 0.037411 (-0.012045) 0.103353 / 0.014526 (0.088828) 0.107934 / 0.176557 (-0.068622) 0.162388 / 0.737135 (-0.574747) 0.113550 / 0.296338 (-0.182789)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.463529 / 0.215209 (0.248320) 4.657688 / 2.077655 (2.580034) 2.455088 / 1.504120 (0.950968) 2.304833 / 1.541195 (0.763638) 2.317520 / 1.468490 (0.849029) 0.563395 / 4.584777 (-4.021382) 3.408489 / 3.745712 (-0.337223) 2.636379 / 5.269862 (-2.633482) 1.425355 / 4.565676 (-3.140322) 0.068335 / 0.424275 (-0.355940) 0.011713 / 0.007607 (0.004106) 0.550230 / 0.226044 (0.324186) 5.519843 / 2.268929 (3.250915) 2.864986 / 55.444624 (-52.579639) 2.604821 / 6.876477 (-4.271655) 2.701501 / 2.142072 (0.559428) 0.668193 / 4.805227 (-4.137034) 0.134739 / 6.500664 (-6.365925) 0.067110 / 0.075469 (-0.008359)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.326358 / 1.841788 (-0.515430) 14.184172 / 8.074308 (6.109864) 14.139245 / 10.191392 (3.947853) 0.151881 / 0.680424 (-0.528542) 0.016718 / 0.534201 (-0.517483) 0.367035 / 0.579283 (-0.212248) 0.393512 / 0.434364 (-0.040852) 0.441261 / 0.540337 (-0.099076) 0.533907 / 1.386936 (-0.853029)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006275 / 0.011353 (-0.005078) 0.003980 / 0.011008 (-0.007028) 0.097617 / 0.038508 (0.059109) 0.034089 / 0.023109 (0.010980) 0.297381 / 0.275898 (0.021483) 0.330106 / 0.323480 (0.006626) 0.003838 / 0.007986 (-0.004148) 0.004042 / 0.004328 (-0.000287) 0.074305 / 0.004250 (0.070055) 0.048318 / 0.037052 (0.011265) 0.295585 / 0.258489 (0.037096) 0.346924 / 0.293841 (0.053083) 0.027397 / 0.128546 (-0.101150) 0.008452 / 0.075646 (-0.067194) 0.326837 / 0.419271 (-0.092435) 0.049515 / 0.043533 (0.005982) 0.303931 / 0.255139 (0.048792) 0.317647 / 0.283200 (0.034447) 0.098280 / 0.141683 (-0.043403) 1.442603 / 1.452155 (-0.009552) 1.524050 / 1.492716 (0.031334)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.215095 / 0.018006 (0.197089) 0.437662 / 0.000490 (0.437173) 0.009771 / 0.000200 (0.009571) 0.000401 / 0.000054 (0.000346)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027169 / 0.037411 (-0.010243) 0.111383 / 0.014526 (0.096857) 0.116163 / 0.176557 (-0.060394) 0.173134 / 0.737135 (-0.564001) 0.122376 / 0.296338 (-0.173962)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.398332 / 0.215209 (0.183123) 3.974166 / 2.077655 (1.896511) 1.793847 / 1.504120 (0.289727) 1.615117 / 1.541195 (0.073922) 1.660288 / 1.468490 (0.191798) 0.523833 / 4.584777 (-4.060944) 3.704273 / 3.745712 (-0.041439) 1.873308 / 5.269862 (-3.396554) 1.203546 / 4.565676 (-3.362131) 0.064949 / 0.424275 (-0.359326) 0.011830 / 0.007607 (0.004223) 0.497294 / 0.226044 (0.271250) 4.948663 / 2.268929 (2.679735) 2.233391 / 55.444624 (-53.211234) 1.903208 / 6.876477 (-4.973269) 2.067908 / 2.142072 (-0.074164) 0.644256 / 4.805227 (-4.160971) 0.142798 / 6.500664 (-6.357866) 0.064734 / 0.075469 (-0.010735)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.172313 / 1.841788 (-0.669475) 14.665853 / 8.074308 (6.591545) 13.147051 / 10.191392 (2.955659) 0.139338 / 0.680424 (-0.541086) 0.017452 / 0.534201 (-0.516749) 0.395660 / 0.579283 (-0.183623) 0.410138 / 0.434364 (-0.024226) 0.460357 / 0.540337 (-0.079980) 0.555670 / 1.386936 (-0.831266)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006247 / 0.011353 (-0.005106) 0.004098 / 0.011008 (-0.006910) 0.075050 / 0.038508 (0.036542) 0.033232 / 0.023109 (0.010122) 0.384139 / 0.275898 (0.108241) 0.420865 / 0.323480 (0.097385) 0.003889 / 0.007986 (-0.004096) 0.003336 / 0.004328 (-0.000993) 0.073837 / 0.004250 (0.069587) 0.048775 / 0.037052 (0.011723) 0.386373 / 0.258489 (0.127884) 0.421718 / 0.293841 (0.127878) 0.027553 / 0.128546 (-0.100993) 0.008724 / 0.075646 (-0.066922) 0.080970 / 0.419271 (-0.338302) 0.045981 / 0.043533 (0.002448) 0.364381 / 0.255139 (0.109242) 0.391203 / 0.283200 (0.108004) 0.101681 / 0.141683 (-0.040002) 1.469533 / 1.452155 (0.017378) 1.562016 / 1.492716 (0.069300)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.222318 / 0.018006 (0.204312) 0.441395 / 0.000490 (0.440905) 0.000408 / 0.000200 (0.000208) 0.000057 / 0.000054 (0.000002)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030291 / 0.037411 (-0.007120) 0.114053 / 0.014526 (0.099527) 0.123124 / 0.176557 (-0.053433) 0.173474 / 0.737135 (-0.563661) 0.129946 / 0.296338 (-0.166393)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.430342 / 0.215209 (0.215133) 4.309782 / 2.077655 (2.232128) 2.110668 / 1.504120 (0.606548) 1.922881 / 1.541195 (0.381687) 1.993562 / 1.468490 (0.525072) 0.523682 / 4.584777 (-4.061095) 3.774152 / 3.745712 (0.028440) 3.354783 / 5.269862 (-1.915079) 1.489793 / 4.565676 (-3.075884) 0.065169 / 0.424275 (-0.359107) 0.011626 / 0.007607 (0.004019) 0.539126 / 0.226044 (0.313081) 5.372593 / 2.268929 (3.103664) 2.570652 / 55.444624 (-52.873973) 2.253353 / 6.876477 (-4.623123) 2.312876 / 2.142072 (0.170804) 0.644241 / 4.805227 (-4.160986) 0.138326 / 6.500664 (-6.362338) 0.064491 / 0.075469 (-0.010979)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.344164 / 1.841788 (-0.497624) 15.124679 / 8.074308 (7.050371) 14.799310 / 10.191392 (4.607918) 0.149054 / 0.680424 (-0.531370) 0.017564 / 0.534201 (-0.516637) 0.394593 / 0.579283 (-0.184690) 0.428768 / 0.434364 (-0.005596) 0.468235 / 0.540337 (-0.072103) 0.557384 / 1.386936 (-0.829552)

@lhoestq lhoestq marked this pull request as ready for review May 31, 2023 17:37
@lhoestq
Copy link
Member Author

lhoestq commented May 31, 2023

@albertvillanova could you take a look at this one ? It directly follows the arrow formatting PR

Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks. Some comments below.

Comment on lines +124 to +125
if hasattr(data_struct, "__array__") and not isinstance(data_struct, jax.Array):
data_struct = data_struct.__array__()
Copy link
Member

@albertvillanova albertvillanova Jun 1, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this tested? The same for similar code lines both other formatters.

shuffling: Optional[ShufflingConfig] = None,
distributed: Optional[DistributedConfig] = None,
token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None,
format_type="deprecated",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice you deprecate it. What about in the classes above?

  • MappedExamplesIterable
  • FilteredExamplesIterable

):
if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None:
raise RuntimeError(
"The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. "
"Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. "
)
if format_type != "deprecated":
formatting = FormattingConfig(format_type=format_type)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe worth raising a warning?

@lhoestq
Copy link
Member Author

lhoestq commented Jun 9, 2023

I added tests for the __array__ case which lets you go from any tensor format to any other tensor format.

I also properly deprecated format_type and added a warning message.

@github-actions
Copy link

github-actions bot commented Jun 9, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007838 / 0.011353 (-0.003515) 0.005177 / 0.011008 (-0.005831) 0.131058 / 0.038508 (0.092550) 0.035959 / 0.023109 (0.012850) 0.414071 / 0.275898 (0.138173) 0.429628 / 0.323480 (0.106148) 0.005151 / 0.007986 (-0.002834) 0.003979 / 0.004328 (-0.000349) 0.103209 / 0.004250 (0.098958) 0.046200 / 0.037052 (0.009148) 0.414020 / 0.258489 (0.155531) 0.475748 / 0.293841 (0.181907) 0.041031 / 0.128546 (-0.087515) 0.014462 / 0.075646 (-0.061185) 0.423706 / 0.419271 (0.004434) 0.063488 / 0.043533 (0.019955) 0.404937 / 0.255139 (0.149798) 0.404973 / 0.283200 (0.121773) 0.114982 / 0.141683 (-0.026701) 1.911867 / 1.452155 (0.459713) 1.925274 / 1.492716 (0.432557)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.284656 / 0.018006 (0.266650) 0.588329 / 0.000490 (0.587840) 0.007092 / 0.000200 (0.006892) 0.000143 / 0.000054 (0.000089)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025136 / 0.037411 (-0.012275) 0.109514 / 0.014526 (0.094988) 0.117953 / 0.176557 (-0.058603) 0.195454 / 0.737135 (-0.541682) 0.134243 / 0.296338 (-0.162096)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.584045 / 0.215209 (0.368836) 6.456922 / 2.077655 (4.379267) 2.759728 / 1.504120 (1.255608) 2.260913 / 1.541195 (0.719718) 2.292535 / 1.468490 (0.824045) 0.906873 / 4.584777 (-3.677904) 5.554455 / 3.745712 (1.808743) 4.881557 / 5.269862 (-0.388305) 2.509121 / 4.565676 (-2.056555) 0.107191 / 0.424275 (-0.317084) 0.014684 / 0.007607 (0.007077) 0.761625 / 0.226044 (0.535580) 7.582708 / 2.268929 (5.313780) 3.150160 / 55.444624 (-52.294464) 2.792284 / 6.876477 (-4.084193) 2.881321 / 2.142072 (0.739248) 1.108353 / 4.805227 (-3.696874) 0.220129 / 6.500664 (-6.280535) 0.075877 / 0.075469 (0.000408)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.465743 / 1.841788 (-0.376045) 17.679219 / 8.074308 (9.604911) 18.929399 / 10.191392 (8.738007) 0.219488 / 0.680424 (-0.460935) 0.028435 / 0.534201 (-0.505766) 0.512623 / 0.579283 (-0.066660) 0.619983 / 0.434364 (0.185619) 0.603430 / 0.540337 (0.063092) 0.730416 / 1.386936 (-0.656520)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008285 / 0.011353 (-0.003068) 0.005771 / 0.011008 (-0.005237) 0.106444 / 0.038508 (0.067936) 0.035078 / 0.023109 (0.011969) 0.441198 / 0.275898 (0.165300) 0.536279 / 0.323480 (0.212800) 0.004561 / 0.007986 (-0.003424) 0.006623 / 0.004328 (0.002294) 0.102392 / 0.004250 (0.098142) 0.051736 / 0.037052 (0.014684) 0.479113 / 0.258489 (0.220624) 0.535088 / 0.293841 (0.241247) 0.041805 / 0.128546 (-0.086741) 0.014031 / 0.075646 (-0.061615) 0.115795 / 0.419271 (-0.303477) 0.057913 / 0.043533 (0.014380) 0.435847 / 0.255139 (0.180708) 0.524831 / 0.283200 (0.241632) 0.119419 / 0.141683 (-0.022263) 1.835577 / 1.452155 (0.383423) 1.936990 / 1.492716 (0.444273)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.288422 / 0.018006 (0.270416) 0.569776 / 0.000490 (0.569287) 0.005652 / 0.000200 (0.005452) 0.000139 / 0.000054 (0.000085)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034632 / 0.037411 (-0.002779) 0.136217 / 0.014526 (0.121691) 0.139468 / 0.176557 (-0.037089) 0.206804 / 0.737135 (-0.530331) 0.148733 / 0.296338 (-0.147606)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.667728 / 0.215209 (0.452518) 6.548972 / 2.077655 (4.471317) 3.051537 / 1.504120 (1.547417) 2.581173 / 1.541195 (1.039978) 2.653443 / 1.468490 (1.184953) 0.906606 / 4.584777 (-3.678171) 5.704384 / 3.745712 (1.958672) 2.848618 / 5.269862 (-2.421244) 1.821402 / 4.565676 (-2.744274) 0.118018 / 0.424275 (-0.306257) 0.014821 / 0.007607 (0.007214) 0.821967 / 0.226044 (0.595923) 8.165818 / 2.268929 (5.896889) 3.744509 / 55.444624 (-51.700116) 2.901097 / 6.876477 (-3.975380) 3.018068 / 2.142072 (0.875996) 1.106155 / 4.805227 (-3.699072) 0.263118 / 6.500664 (-6.237546) 0.088508 / 0.075469 (0.013039)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.725860 / 1.841788 (-0.115928) 19.411246 / 8.074308 (11.336938) 20.807499 / 10.191392 (10.616107) 0.238417 / 0.680424 (-0.442007) 0.026550 / 0.534201 (-0.507651) 0.500715 / 0.579283 (-0.078568) 0.615547 / 0.434364 (0.181183) 0.614361 / 0.540337 (0.074023) 0.720365 / 1.386936 (-0.666571)

@lhoestq lhoestq requested a review from albertvillanova June 12, 2023 10:14
Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you!!!

@lhoestq lhoestq merged commit 963ff6d into main Jun 13, 2023
@lhoestq lhoestq deleted the iterable-torch-formatting branch June 13, 2023 15:57
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006640 / 0.011353 (-0.004713) 0.004079 / 0.011008 (-0.006930) 0.100555 / 0.038508 (0.062046) 0.037318 / 0.023109 (0.014209) 0.320050 / 0.275898 (0.044152) 0.358860 / 0.323480 (0.035380) 0.003828 / 0.007986 (-0.004158) 0.003215 / 0.004328 (-0.001113) 0.076577 / 0.004250 (0.072326) 0.048080 / 0.037052 (0.011028) 0.324759 / 0.258489 (0.066270) 0.361862 / 0.293841 (0.068021) 0.030759 / 0.128546 (-0.097787) 0.008998 / 0.075646 (-0.066648) 0.329105 / 0.419271 (-0.090167) 0.051407 / 0.043533 (0.007875) 0.311067 / 0.255139 (0.055928) 0.334401 / 0.283200 (0.051201) 0.098307 / 0.141683 (-0.043376) 1.500931 / 1.452155 (0.048776) 1.574646 / 1.492716 (0.081930)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.219080 / 0.018006 (0.201073) 0.447117 / 0.000490 (0.446627) 0.009091 / 0.000200 (0.008891) 0.000396 / 0.000054 (0.000341)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026048 / 0.037411 (-0.011363) 0.112714 / 0.014526 (0.098188) 0.116426 / 0.176557 (-0.060131) 0.172187 / 0.737135 (-0.564948) 0.121707 / 0.296338 (-0.174632)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.358898 / 0.215209 (0.143689) 3.589212 / 2.077655 (1.511557) 1.677927 / 1.504120 (0.173807) 1.515861 / 1.541195 (-0.025334) 1.598479 / 1.468490 (0.129989) 0.478265 / 4.584777 (-4.106512) 3.834982 / 3.745712 (0.089270) 1.933815 / 5.269862 (-3.336047) 1.122769 / 4.565676 (-3.442908) 0.066984 / 0.424275 (-0.357291) 0.011276 / 0.007607 (0.003669) 0.512530 / 0.226044 (0.286486) 5.112667 / 2.268929 (2.843739) 2.266336 / 55.444624 (-53.178288) 1.929671 / 6.876477 (-4.946806) 2.127231 / 2.142072 (-0.014842) 0.671307 / 4.805227 (-4.133920) 0.143919 / 6.500664 (-6.356745) 0.066086 / 0.075469 (-0.009383)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.208767 / 1.841788 (-0.633021) 15.008415 / 8.074308 (6.934106) 14.085442 / 10.191392 (3.894050) 0.184164 / 0.680424 (-0.496260) 0.017619 / 0.534201 (-0.516582) 0.394443 / 0.579283 (-0.184840) 0.457653 / 0.434364 (0.023289) 0.473169 / 0.540337 (-0.067169) 0.571332 / 1.386936 (-0.815604)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007009 / 0.011353 (-0.004344) 0.004330 / 0.011008 (-0.006678) 0.077462 / 0.038508 (0.038954) 0.034780 / 0.023109 (0.011671) 0.395573 / 0.275898 (0.119675) 0.425444 / 0.323480 (0.101964) 0.004119 / 0.007986 (-0.003866) 0.003597 / 0.004328 (-0.000731) 0.075209 / 0.004250 (0.070958) 0.050871 / 0.037052 (0.013819) 0.402990 / 0.258489 (0.144500) 0.445334 / 0.293841 (0.151493) 0.032492 / 0.128546 (-0.096054) 0.009066 / 0.075646 (-0.066581) 0.083073 / 0.419271 (-0.336198) 0.051661 / 0.043533 (0.008128) 0.395207 / 0.255139 (0.140068) 0.409556 / 0.283200 (0.126356) 0.106035 / 0.141683 (-0.035648) 1.506255 / 1.452155 (0.054101) 1.598724 / 1.492716 (0.106008)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.194733 / 0.018006 (0.176727) 0.444920 / 0.000490 (0.444431) 0.002402 / 0.000200 (0.002202) 0.000083 / 0.000054 (0.000028)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030464 / 0.037411 (-0.006947) 0.119153 / 0.014526 (0.104627) 0.126081 / 0.176557 (-0.050476) 0.179692 / 0.737135 (-0.557444) 0.131834 / 0.296338 (-0.164504)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.440153 / 0.215209 (0.224944) 4.397504 / 2.077655 (2.319850) 2.138320 / 1.504120 (0.634200) 1.950596 / 1.541195 (0.409402) 2.079792 / 1.468490 (0.611302) 0.537606 / 4.584777 (-4.047171) 3.689420 / 3.745712 (-0.056292) 2.960732 / 5.269862 (-2.309129) 1.585652 / 4.565676 (-2.980024) 0.066102 / 0.424275 (-0.358173) 0.011429 / 0.007607 (0.003821) 0.537011 / 0.226044 (0.310967) 5.342171 / 2.268929 (3.073242) 2.624446 / 55.444624 (-52.820179) 2.313311 / 6.876477 (-4.563166) 2.389166 / 2.142072 (0.247094) 0.657547 / 4.805227 (-4.147681) 0.141640 / 6.500664 (-6.359025) 0.066102 / 0.075469 (-0.009367)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.130471 / 1.841788 (-0.711317) 14.824792 / 8.074308 (6.750484) 13.436463 / 10.191392 (3.245071) 0.155688 / 0.680424 (-0.524736) 0.015811 / 0.534201 (-0.518390) 0.355623 / 0.579283 (-0.223660) 0.450604 / 0.434364 (0.016241) 0.472542 / 0.540337 (-0.067796) 0.563584 / 1.386936 (-0.823352)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

IterableDataset.with_format("torch") not working
3 participants