Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
40 commits
Select commit Hold shift + click to select a range
fa8faed
Add Photon model and pipeline support
Oct 8, 2025
64ddfe5
just store the T5Gemma encoder
Oct 9, 2025
2947da0
enhance_vae_properties if vae is provided only
Oct 9, 2025
2575997
remove autocast for text encoder forwad
Oct 9, 2025
27421cb
BF16 example
david-PHR Oct 9, 2025
1321ab4
conditioned CFG
Oct 10, 2025
32807a1
remove enhance vae and use vae.config directly when possible
Oct 10, 2025
117e835
move PhotonAttnProcessor2_0 in transformer_photon
Oct 10, 2025
c86aed2
remove einops dependency and now inherits from AttentionMixin
Oct 10, 2025
5f6359f
unify the structure of the forward block
Oct 10, 2025
3396143
update doc
Oct 10, 2025
c78f444
update doc
Oct 10, 2025
3f70395
fix T5Gemma loading from hub
Oct 10, 2025
d09ff3c
fix timestep shift
Oct 13, 2025
91486cf
remove lora support from doc
Oct 13, 2025
23dd181
Rename EmbedND for PhotoEmbedND
DavidBert Oct 13, 2025
7efad33
remove modulation dataclass
DavidBert Oct 13, 2025
ef9c48d
put _attn_forward and _ffn_forward logic in PhotonBlock's forward
DavidBert Oct 13, 2025
178cc6e
renam LastLayer for FinalLayer
DavidBert Oct 13, 2025
924643a
remove lora related code
DavidBert Oct 13, 2025
faa00b9
rename vae_spatial_compression_ratio for vae_scale_factor
DavidBert Oct 13, 2025
804dafd
support prompt_embeds in call
DavidBert Oct 13, 2025
6f90e41
move xattention conditionning out computation out of the denoising loop
DavidBert Oct 13, 2025
59f4bda
add negative prompts
DavidBert Oct 13, 2025
9ad5720
Use _import_structure for lazy loading
DavidBert Oct 13, 2025
027dbd5
make quality + style
DavidBert Oct 13, 2025
ff28f65
add pipeline test + corresponding fixes
DavidBert Oct 15, 2025
28b9cf2
utility function that determines the default resolution given the VAE
DavidBert Oct 15, 2025
b596595
Refactor PhotonAttention to match Flux pattern
DavidBert Oct 16, 2025
c522119
built-in RMSNorm
DavidBert Oct 16, 2025
3239f26
Revert accidental .gitignore change
DavidBert Oct 16, 2025
b7bbb04
parameter names match the standard diffusers conventions
DavidBert Oct 16, 2025
83e0396
renaming and remove unecessary attributes setting
DavidBert Oct 16, 2025
582b64a
Update docs/source/en/api/pipelines/photon.md
DavidBert Oct 16, 2025
33926e0
Update docs/source/en/api/pipelines/photon.md
DavidBert Oct 16, 2025
c9e0a20
Update docs/source/en/api/pipelines/photon.md
DavidBert Oct 16, 2025
2877b60
Update docs/source/en/api/pipelines/photon.md
DavidBert Oct 16, 2025
ed87475
quantization example
DavidBert Oct 16, 2025
8aa65ba
added doc to toctree
DavidBert Oct 16, 2025
fba7b33
Merge branch 'photon' of https://github.com/Photoroom/diffusers into …
DavidBert Oct 16, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -570,6 +570,8 @@
title: Paint by Example
- local: api/pipelines/pia
title: Personalized Image Animator (PIA)
- local: api/pipelines/photon
title: Photon
- local: api/pipelines/pixart
title: PixArt-α
- local: api/pipelines/pixart_sigma
Expand Down
131 changes: 131 additions & 0 deletions docs/source/en/api/pipelines/photon.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->

# Photon


Photon generates high-quality images from text using a simplified MMDIT architecture where text tokens don't update through transformer blocks. It employs flow matching with discrete scheduling for efficient sampling and uses Google's T5Gemma-2B-2B-UL2 model for multi-language text encoding. The ~1.3B parameter transformer delivers fast inference without sacrificing quality. You can choose between Flux VAE (8x compression, 16 latent channels) for balanced quality and speed or DC-AE (32x compression, 32 latent channels) for latent compression and faster processing.

## Available models

Photon offers multiple variants with different VAE configurations, each optimized for specific resolutions. Base models excel with detailed prompts, capturing complex compositions and subtle details. Fine-tuned models trained on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) improve aesthetic quality, especially with simpler prompts.


| Model | Resolution | Fine-tuned | Distilled | Description | Suggested prompts | Suggested parameters | Recommended dtype |
|:-----:|:-----------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
| [`Photoroom/photon-256-t2i`](https://huggingface.co/Photoroom/photon-256-t2i)| 256 | No | No | Base model pre-trained at 256 with Flux VAE|Works best with detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/photon-256-t2i-sft`](https://huggingface.co/Photoroom/photon-256-t2i-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with Flux VAE | Can handle less detailed prompts|28 steps, cfg=5.0| `torch.bfloat16` |
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are these model links expected to be broken for now? I get a 404 for https://huggingface.co/Photoroom/photon-256-t2i-sft currently and see that only the Photoroom/photon-256-t2i model is currently in the Photon collection.

| [`Photoroom/photon-512-t2i`](https://huggingface.co/Photoroom/photon-512-t2i)| 512 | No | No | Base model pre-trained at 512 with Flux VAE |Works best with detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/photon-512-t2i-sft`](hhttps://huggingface.co/Photoroom/photon-512-t2i-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with Flux VAE | Can handle less detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
| [`Photoroom/photon-512-t2i-sft`](hhttps://huggingface.co/Photoroom/photon-512-t2i-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with Flux VAE | Can handle less detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/photon-512-t2i-sft`](https://huggingface.co/Photoroom/photon-512-t2i-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with Flux VAE | Can handle less detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |

| [`Photoroom/photon-512-t2i-sft-distilled`](https://huggingface.co/Photoroom/photon-512-t2i-sft-distilled)| 512 | Yes | Yes | 8-step distilled model from [`Photoroom/photon-512-t2i-sft`](https://huggingface.co/Photoroom/photon-512-t2i-sft) | Can handle less detailed prompts in natural language|8 steps, cfg=1.0| `torch.bfloat16` |
| [`Photoroom/photon-512-t2i-dc-ae`](https://huggingface.co/Photoroom/photon-512-t2i-dc-ae)| 512 | No | No | Base model pre-trained at 512 with [Deep Compression Autoencoder (DC-AE)](https://hanlab.mit.edu/projects/dc-ae)|Works best with detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/photon-512-t2i-dc-ae-sft`](https://huggingface.co/Photoroom/photon-512-t2i-dc-ae-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with [Deep Compression Autoencoder (DC-AE)](https://hanlab.mit.edu/projects/dc-ae) | Can handle less detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/photon-512-t2i-dc-ae-sft-distilled`](https://huggingface.co/Photoroom/photon-512-t2i-dc-ae-sft-distilled)| 512 | Yes | Yes | 8-step distilled model from [`Photoroom/photon-512-t2i-dc-ae-sft-distilled`](https://huggingface.co/Photoroom/photon-512-t2i-dc-ae-sft-distilled) | Can handle less detailed prompts in natural language|8 steps, cfg=1.0| `torch.bfloat16` |s

Refer to [this](https://huggingface.co/collections/Photoroom/photon-models-68e66254c202ebfab99ad38e) collection for more information.

## Loading the pipeline

Load the pipeline with [`~DiffusionPipeline.from_pretrained`].

```py
from diffusers.pipelines.photon import PhotonPipeline

# Load pipeline - VAE and text encoder will be loaded from HuggingFace
pipe = PhotonPipeline.from_pretrained("Photoroom/photon-512-t2i-sft", torch_dtype=torch.bfloat16)
pipe.to("cuda")

prompt = "A front-facing portrait of a lion the golden savanna at sunset."
image = pipe(prompt, num_inference_steps=28, guidance_scale=5.0).images[0]
image.save("photon_output.png")
```

### Manual Component Loading

Load components individually to customize the pipeline for instance to use quantized models.

```py
import torch
from diffusers.pipelines.photon import PhotonPipeline
from diffusers.models import AutoencoderKL, AutoencoderDC
from diffusers.models.transformers.transformer_photon import PhotonTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from transformers import T5GemmaModel, GemmaTokenizerFast
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as BitsAndBytesConfig

quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
# Load transformer
transformer = PhotonTransformer2DModel.from_pretrained(
"checkpoints/photon-512-t2i-sft",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)

# Load scheduler
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
"checkpoints/photon-512-t2i-sft", subfolder="scheduler"
)

# Load T5Gemma text encoder
t5gemma_model = T5GemmaModel.from_pretrained("google/t5gemma-2b-2b-ul2",
quantization_config=quant_config,
torch_dtype=torch.bfloat16)
text_encoder = t5gemma_model.encoder.to(dtype=torch.bfloat16)
tokenizer = GemmaTokenizerFast.from_pretrained("google/t5gemma-2b-2b-ul2")
tokenizer.model_max_length = 256

# Load VAE - choose either Flux VAE or DC-AE
# Flux VAE
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev",
subfolder="vae",
quantization_config=quant_config,
torch_dtype=torch.bfloat16)

pipe = PhotonPipeline(
transformer=transformer,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae
)
pipe.to("cuda")
```


## Memory Optimization

For memory-constrained environments:

```py
import torch
from diffusers.pipelines.photon import PhotonPipeline

pipe = PhotonPipeline.from_pretrained("Photoroom/photon-512-t2i-sft", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload() # Offload components to CPU when not in use

# Or use sequential CPU offload for even lower memory
pipe.enable_sequential_cpu_offload()
```

## PhotonPipeline

[[autodoc]] PhotonPipeline
- all
- __call__

## PhotonPipelineOutput

[[autodoc]] pipelines.photon.pipeline_output.PhotonPipelineOutput
Loading
Loading