Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow batching for feature-extraction #106

Merged
merged 6 commits into from
Jun 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 30 additions & 14 deletions api-inference-community/api_inference_community/validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,16 +124,30 @@ class TableQuestionAnsweringInputsCheck(BaseModel):
query: str

@validator("table")
def all_rows_must_have_same_length(
cls, table: Dict[str, List[str]]
):
def all_rows_must_have_same_length(cls, table: Dict[str, List[str]]):
rows = list(table.values())
n = len(rows[0])
if all(len(x) == n for x in rows):
return table
raise ValueError("All rows in the table must be the same length")


class StringOrStringBatchInputCheck(BaseModel):
__root__: Union[List[str], str]

@validator("__root__")
def input_must_not_be_empty(cls, __root__: Union[List[str], str]):
if isinstance(__root__, list):
if len(__root__) == 0:
raise ValueError(
"The inputs are invalid, at least one input is required"
)
return __root__


class StringInput(BaseModel):
__root__: str


PARAMS_MAPPING = {
"conversational": SharedGenerationParams,
Expand All @@ -147,10 +161,21 @@ def all_rows_must_have_same_length(
INPUTS_MAPPING = {
"conversational": ConversationalInputsCheck,
"question-answering": QuestionInputsCheck,
"feature-extraction": StringOrStringBatchInputCheck,
"sentence-similarity": SentenceSimilarityInputsCheck,
"table-question-answering": TableQuestionAnsweringInputsCheck,
"fill-mask": StringInput,
"summarization": StringInput,
"text2text-generation": StringInput,
"text-generation": StringInput,
"text-classification": StringInput,
"token-classification": StringInput,
"translation": StringInput,
"zero-shot-classification": StringInput,
}

BATCH_ENABLED_PIPELINES = ["feature-extraction"]


def check_params(params, tag):
if tag in PARAMS_MAPPING:
Expand All @@ -161,18 +186,9 @@ def check_params(params, tag):
def check_inputs(inputs, tag):
if tag in INPUTS_MAPPING:
INPUTS_MAPPING[tag].parse_obj(inputs)
return True
else:
# Some tasks just expect {inputs: "str"}. Such as:
# feature-extraction
# fill-mask
# text2text-generation
# text-classification
# text-generation
# token-classification
# translation
if not isinstance(inputs, str):
raise ValueError("The inputs is invalid, we expect a string")
return True
raise ValueError(f"{tag} is not a valid pipeline.")


def normalize_payload(
Expand Down
39 changes: 35 additions & 4 deletions api-inference-community/tests/test_nlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,15 +10,23 @@ class ValidationTestCase(TestCase):
def test_malformed_input(self):
bpayload = b"\xc3\x28"
with self.assertRaises(UnicodeDecodeError):
normalize_payload_nlp(bpayload, "tag")
normalize_payload_nlp(bpayload, "question-answering")

def test_accept_raw_string_for_backward_compatibility(self):
query = "funny cats"
bpayload = query.encode("utf-8")
normalized_inputs, processed_params = normalize_payload_nlp(bpayload, "tag")
normalized_inputs, processed_params = normalize_payload_nlp(
bpayload, "translation"
)
self.assertEqual(processed_params, {})
self.assertEqual(normalized_inputs, query)

def test_invalid_tag(self):
query = "funny cats"
bpayload = query.encode("utf-8")
with self.assertRaises(ValueError):
normalize_payload_nlp(bpayload, "invalid-tag")


class QuestionAnsweringValidationTestCase(TestCase):
def test_valid_input(self):
Expand Down Expand Up @@ -418,15 +426,38 @@ class TextGenerationTestCase(make_text_generation_test_case("text-generation")):
pass


class TasksWithOnlyInputStringTestCase(TestCase):
def test_feature_extraction_accept_string_no_params(self):
class FeatureExtractionTestCase(TestCase):
def test_valid_string(self):
bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8")
normalized_inputs, processed_params = normalize_payload_nlp(
bpayload, "feature-extraction"
)
self.assertEqual(processed_params, {})
self.assertEqual(normalized_inputs, "whatever")

def test_valid_list_of_strings(self):
inputs = ["hugging", "face"]
bpayload = json.dumps({"inputs": inputs}).encode("utf-8")
normalized_inputs, processed_params = normalize_payload_nlp(
bpayload, "feature-extraction"
)
self.assertEqual(processed_params, {})
self.assertEqual(normalized_inputs, inputs)

def test_invalid_list_with_other_type(self):
inputs = ["hugging", [1, 2, 3]]
bpayload = json.dumps({"inputs": inputs}).encode("utf-8")
with self.assertRaises(ValueError):
normalize_payload_nlp(bpayload, "feature-extraction")

def test_invalid_empty_list(self):
inputs = []
bpayload = json.dumps({"inputs": inputs}).encode("utf-8")
with self.assertRaises(ValueError):
normalize_payload_nlp(bpayload, "feature-extraction")


class TasksWithOnlyInputStringTestCase(TestCase):
def test_fill_mask_accept_string_no_params(self):
bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8")
normalized_inputs, processed_params = normalize_payload_nlp(
Expand Down