Skip to content

Commit

Permalink
FIX Don't eagerly import bnb for LoftQ (#1683)
Browse files Browse the repository at this point in the history
We accidentally added code in loftq_utils.py that eagerly imports bnb,
which we want to avoid to prevent CUDA from being initialized too early.
  • Loading branch information
BenjaminBossan authored Apr 25, 2024
1 parent f0d3c6b commit b1d6c77
Showing 1 changed file with 7 additions and 4 deletions.
11 changes: 7 additions & 4 deletions src/peft/utils/loftq_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,10 +31,6 @@
from peft.import_utils import is_bnb_4bit_available, is_bnb_available


if is_bnb_available():
import bitsandbytes as bnb


class NFQuantizer:
def __init__(self, num_bits=2, device="cuda", method="normal", block_size=64, *args, **kwargs):
super().__init__(*args, **kwargs)
Expand Down Expand Up @@ -192,6 +188,11 @@ def _low_rank_decomposition(weight, reduced_rank=32):

@torch.no_grad()
def loftq_init(weight: Union[torch.Tensor, torch.nn.Parameter], num_bits: int, reduced_rank: int, num_iter=1):
if is_bnb_available():
import bitsandbytes as bnb
else:
raise ValueError("bitsandbytes is not available, please install it to use LoftQ.")

if num_bits not in [2, 4, 8]:
raise ValueError("Only support 2, 4, 8 bits quantization")
if num_iter <= 0:
Expand Down Expand Up @@ -239,6 +240,8 @@ def loftq_init(weight: Union[torch.Tensor, torch.nn.Parameter], num_bits: int, r

@torch.no_grad()
def _loftq_init_new(qweight, weight, num_bits: int, reduced_rank: int):
import bitsandbytes as bnb

if num_bits != 4:
raise ValueError("Only 4 bit quantization supported at the moment.")
if not is_bnb_4bit_available():
Expand Down

0 comments on commit b1d6c77

Please sign in to comment.