Skip to content

How to set Lora_dropout=0 when loading trained peft model for inference? #1673

@flyliu2017

Description

@flyliu2017

System Info

peft==0.10.0
transformers==4.39.3

Who can help?

No response

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder
  • My own task or dataset (give details below)

Reproduction

class Linear(nn.Module, LoraLayer): 

   def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype
            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    x = dropout(x)
                    result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)

            result = result.to(torch_result_dtype)

        return result

Expected behavior

We can see that lora_dropout in forward function is working the same way whether under train or inference mode.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions