Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs / LoRA: Add more information on merge_and_unload docs #1805

Merged
merged 3 commits into from
May 28, 2024
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion docs/source/developer_guides/lora.md
Original file line number Diff line number Diff line change
Expand Up @@ -140,10 +140,18 @@ Assuming the original model had 5 layers `[0, 1, 2 ,3, 4]`, this would create a
[Fewshot-Metamath-OrcaVicuna-Mistral-10B](https://huggingface.co/abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B) is an example of a model trained using this method on Mistral-7B expanded to 10B. The
[adapter_config.json](https://huggingface.co/abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B/blob/main/adapter_config.json) shows a sample LoRA adapter config applying this method for fine-tuning.

## Merge adapters
## Merge LoRA weights into the base model

While LoRA is significantly smaller and faster to train, you may encounter latency issues during inference due to separately loading the base model and the LoRA adapter. To eliminate latency, use the [`~LoraModel.merge_and_unload`] function to merge the adapter weights with the base model. This allows you to use the newly merged model as a standalone model. The [`~LoraModel.merge_and_unload`] function doesn't keep the adapter weights in memory.

Below is a diagram that explains the intuition of LoRA adapter merging:

<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_diagram.png"/>
</div>

We show in the snippets below how to run that using peft.
younesbelkada marked this conversation as resolved.
Show resolved Hide resolved

```py
from transformers import AutoModelForCausalLM
from peft import PeftModel
Expand Down
Loading