Skip to content

Commit

Permalink
add test
Browse files Browse the repository at this point in the history
  • Loading branch information
nghuyong committed Aug 27, 2022
1 parent ad8e085 commit 11c5c73
Showing 1 changed file with 1 addition and 47 deletions.
48 changes: 1 addition & 47 deletions tests/models/ernie/test_modeling_ernie.py
Original file line number Diff line number Diff line change
Expand Up @@ -576,50 +576,4 @@ def test_torchscript_device_change(self):
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(traced_model, os.path.join(tmp, "ernie.pt"))
loaded = torch.jit.load(os.path.join(tmp, "ernie.pt"), map_location=torch_device)
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))


@require_torch
class ErnieModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = ErnieModel.from_pretrained("nghuyong/ernie-3.0-base-zh")
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 11, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]])

self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))

@slow
def test_inference_no_head_relative_embedding_key(self):
model = ErnieModel.from_pretrained("zhiheng-huang/nghuyong/ernie-3.0-base-zh-embedding-relative-key")
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 11, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]]
)

self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))

@slow
def test_inference_no_head_relative_embedding_key_query(self):
model = ErnieModel.from_pretrained("zhiheng-huang/nghuyong/ernie-3.0-base-zh-embedding-relative-key-query")
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 11, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]]
)

self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))

0 comments on commit 11c5c73

Please sign in to comment.