Skip to content

Commit

Permalink
[Trainer] Allow passing image processor (#29896)
Browse files Browse the repository at this point in the history
* Add image processor to trainer

* Replace tokenizer=image_processor everywhere
  • Loading branch information
NielsRogge authored Apr 5, 2024
1 parent d704c0b commit 1ab7136
Show file tree
Hide file tree
Showing 21 changed files with 43 additions and 26 deletions.
4 changes: 2 additions & 2 deletions docs/source/en/tasks/image_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -322,7 +322,7 @@ At this point, only three steps remain:
... data_collator=data_collator,
... train_dataset=food["train"],
... eval_dataset=food["test"],
... tokenizer=image_processor,
... image_processor=image_processor,
... compute_metrics=compute_metrics,
... )

Expand Down Expand Up @@ -418,7 +418,7 @@ and use the [PushToHubCallback](../main_classes/keras_callbacks#transformers.Pus
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset)
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="food_classifier",
... tokenizer=image_processor,
... image_processor=image_processor,
... save_strategy="no",
... )
>>> callbacks = [metric_callback, push_to_hub_callback]
Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/tasks/object_detection.md
Original file line number Diff line number Diff line change
Expand Up @@ -384,7 +384,7 @@ Finally, bring everything together, and call [`~transformers.Trainer.train`]:
... args=training_args,
... data_collator=collate_fn,
... train_dataset=cppe5["train"],
... tokenizer=image_processor,
... image_processor=image_processor,
... )

>>> trainer.train()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/tasks/semantic_segmentation.md
Original file line number Diff line number Diff line change
Expand Up @@ -642,7 +642,7 @@ and use the [`PushToHubCallback`] to upload the model:
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )

>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", image_processor=image_processor)

>>> callbacks = [metric_callback, push_to_hub_callback]
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/tasks/video_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -407,7 +407,7 @@ Then you just pass all of this along with the datasets to `Trainer`:
... args,
... train_dataset=train_dataset,
... eval_dataset=val_dataset,
... tokenizer=image_processor,
... image_processor=image_processor,
... compute_metrics=compute_metrics,
... data_collator=collate_fn,
... )
Expand Down
2 changes: 1 addition & 1 deletion docs/source/es/tasks/image_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ Al llegar a este punto, solo quedan tres pasos:
... data_collator=data_collator,
... train_dataset=food["train"],
... eval_dataset=food["test"],
... tokenizer=image_processor,
... image_processor=image_processor,
... )

>>> trainer.train()
Expand Down
4 changes: 2 additions & 2 deletions docs/source/ja/tasks/image_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -328,7 +328,7 @@ food["test"].set_transform(preprocess_val)
... data_collator=data_collator,
... train_dataset=food["train"],
... eval_dataset=food["test"],
... tokenizer=image_processor,
... image_processor=image_processor,
... compute_metrics=compute_metrics,
... )

Expand Down Expand Up @@ -426,7 +426,7 @@ Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Data
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset)
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="food_classifier",
... tokenizer=image_processor,
... image_processor=image_processor,
... save_strategy="no",
... )
>>> callbacks = [metric_callback, push_to_hub_callback]
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ja/tasks/object_detection.md
Original file line number Diff line number Diff line change
Expand Up @@ -376,7 +376,7 @@ DETR モデルをトレーニングできる「ラベル」。画像プロセッ
... args=training_args,
... data_collator=collate_fn,
... train_dataset=cppe5["train"],
... tokenizer=image_processor,
... image_processor=image_processor,
... )

>>> trainer.train()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ja/tasks/semantic_segmentation.md
Original file line number Diff line number Diff line change
Expand Up @@ -434,7 +434,7 @@ TensorFlow でモデルを微調整するには、次の手順に従います。
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )

>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", image_processor=image_processor)

>>> callbacks = [metric_callback, push_to_hub_callback]
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ja/tasks/sequence_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -436,7 +436,7 @@ TensorFlow でモデルを微調整するには、次の手順に従います。
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )

>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", image_processor=image_processor)

>>> callbacks = [metric_callback, push_to_hub_callback]
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ja/tasks/video_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -414,7 +414,7 @@ def compute_metrics(eval_pred):
... args,
... train_dataset=train_dataset,
... eval_dataset=val_dataset,
... tokenizer=image_processor,
... image_processor=image_processor,
... compute_metrics=compute_metrics,
... data_collator=collate_fn,
... )
Expand Down
4 changes: 2 additions & 2 deletions docs/source/ko/tasks/image_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ food["test"].set_transform(preprocess_val)
... data_collator=data_collator,
... train_dataset=food["train"],
... eval_dataset=food["test"],
... tokenizer=image_processor,
... image_processor=image_processor,
... compute_metrics=compute_metrics,
... )

Expand Down Expand Up @@ -417,7 +417,7 @@ TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset)
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="food_classifier",
... tokenizer=image_processor,
... image_processor=image_processor,
... save_strategy="no",
... )
>>> callbacks = [metric_callback, push_to_hub_callback]
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/tasks/object_detection.md
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,7 @@ DatasetDict({
... args=training_args,
... data_collator=collate_fn,
... train_dataset=cppe5["train"],
... tokenizer=image_processor,
... image_processor=image_processor,
... )

>>> trainer.train()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/tasks/semantic_segmentation.md
Original file line number Diff line number Diff line change
Expand Up @@ -424,7 +424,7 @@ TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )

>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", image_processor=image_processor)

>>> callbacks = [metric_callback, push_to_hub_callback]
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/tasks/video_classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -411,7 +411,7 @@ def compute_metrics(eval_pred):
... args,
... train_dataset=train_dataset,
... eval_dataset=val_dataset,
... tokenizer=image_processor,
... image_processor=image_processor,
... compute_metrics=compute_metrics,
... data_collator=collate_fn,
... )
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -411,7 +411,7 @@ def val_transforms(example_batch):
train_dataset=dataset["train"] if training_args.do_train else None,
eval_dataset=dataset["validation"] if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=image_processor,
image_processor=image_processor,
data_collator=collate_fn,
)

Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/image-pretraining/run_mae.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,7 +369,7 @@ def preprocess_images(examples):
args=training_args,
train_dataset=ds["train"] if training_args.do_train else None,
eval_dataset=ds["validation"] if training_args.do_eval else None,
tokenizer=image_processor,
image_processor=image_processor,
data_collator=collate_fn,
)

Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/image-pretraining/run_mim.py
Original file line number Diff line number Diff line change
Expand Up @@ -458,7 +458,7 @@ def preprocess_images(examples):
args=training_args,
train_dataset=ds["train"] if training_args.do_train else None,
eval_dataset=ds["validation"] if training_args.do_eval else None,
tokenizer=image_processor,
image_processor=image_processor,
data_collator=collate_fn,
)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -510,7 +510,7 @@ def preprocess_val(example_batch):
train_dataset=dataset["train"] if training_args.do_train else None,
eval_dataset=dataset["validation"] if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=image_processor,
image_processor=image_processor,
data_collator=default_data_collator,
)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -552,7 +552,7 @@ def compute_metrics(p):
output_dir=training_args.output_dir,
hub_model_id=push_to_hub_model_id,
hub_token=training_args.push_to_hub_token,
tokenizer=image_processor,
image_processor=image_processor,
**model_card_kwargs,
)
)
Expand Down
19 changes: 16 additions & 3 deletions src/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@
from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from .debug_utils import DebugOption, DebugUnderflowOverflow
from .hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS, default_hp_search_backend
from .image_processing_utils import BaseImageProcessor
from .integrations.deepspeed import deepspeed_init, deepspeed_load_checkpoint, is_deepspeed_available
from .integrations.tpu import tpu_spmd_dataloader
from .modelcard import TrainingSummary
Expand Down Expand Up @@ -303,6 +304,9 @@ class Trainer:
The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs to the
maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
interrupted training or reuse the fine-tuned model.
image_processor ([`BaseImageProcessor`], *optional*):
The image processor used to preprocess the data. If provided, it will be saved along the model to make it easier
to rerun an interrupted training or reuse the fine-tuned model.
model_init (`Callable[[], PreTrainedModel]`, *optional*):
A function that instantiates the model to be used. If provided, each call to [`~Trainer.train`] will start
from a new instance of the model as given by this function.
Expand Down Expand Up @@ -357,6 +361,7 @@ def __init__(
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
image_processor: Optional["BaseImageProcessor"] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
Expand Down Expand Up @@ -485,11 +490,12 @@ def __init__(
):
self.place_model_on_device = False

default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
default_collator = DataCollatorWithPadding(tokenizer) if tokenizer is not None else default_data_collator
self.data_collator = data_collator if data_collator is not None else default_collator
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.tokenizer = tokenizer
self.image_processor = image_processor

# Bnb Quantized models doesn't support `.to` operation.
if (
Expand Down Expand Up @@ -541,7 +547,7 @@ def __init__(
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
self.callback_handler = CallbackHandler(
callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
callbacks, self.model, self.tokenizer, self.image_processor, self.optimizer, self.lr_scheduler
)
self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)

Expand Down Expand Up @@ -3276,6 +3282,8 @@ def _save_tpu(self, output_dir: Optional[str] = None):
)
if self.tokenizer is not None and self.args.should_save:
self.tokenizer.save_pretrained(output_dir)
if self.image_processor is not None and self.args.should_save:
self.image_processor.save_pretrained(output_dir)

# We moved the model from TPU -> CPU for saving the weights.
# Now we should move it back to subsequent compute still works.
Expand Down Expand Up @@ -3313,6 +3321,8 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None):

if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
if self.image_processor is not None:
self.image_processor.save_pretrained(output_dir)

# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
Expand Down Expand Up @@ -4009,6 +4019,9 @@ def _push_from_checkpoint(self, checkpoint_folder):
# Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Same for the image processor
if self.image_processor is not None:
self.image_processor.save_pretrained(output_dir)
# Same for the training arguments
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))

Expand Down Expand Up @@ -4056,7 +4069,7 @@ def _finish_current_push(self):

def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
"""
Upload `self.model` and `self.tokenizer` to the 🤗 model hub on the repo `self.args.hub_model_id`.
Upload `self.model` and `self.tokenizer` or `self.image_processor` to the 🤗 model hub on the repo `self.args.hub_model_id`.
Parameters:
commit_message (`str`, *optional*, defaults to `"End of training"`):
Expand Down
6 changes: 5 additions & 1 deletion src/transformers/trainer_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,8 @@ class TrainerCallback:
The model being trained.
tokenizer ([`PreTrainedTokenizer`]):
The tokenizer used for encoding the data.
image_processor ([`BaseImageProcessor`]):
The image processor used for encoding the images.
optimizer (`torch.optim.Optimizer`):
The optimizer used for the training steps.
lr_scheduler (`torch.optim.lr_scheduler.LambdaLR`):
Expand Down Expand Up @@ -307,12 +309,13 @@ def on_prediction_step(self, args: TrainingArguments, state: TrainerState, contr
class CallbackHandler(TrainerCallback):
"""Internal class that just calls the list of callbacks in order."""

def __init__(self, callbacks, model, tokenizer, optimizer, lr_scheduler):
def __init__(self, callbacks, model, tokenizer, image_processor, optimizer, lr_scheduler):

This comment has been minimized.

Copy link
@daniellok-db

daniellok-db Apr 6, 2024

Contributor

@NielsRogge this new param is currently causing problems for setfit.Trainer, because it isn't updated to handle it.

can we either make the param optional, or fix setfit.Trainer?

self.callbacks = []
for cb in callbacks:
self.add_callback(cb)
self.model = model
self.tokenizer = tokenizer
self.image_processor = image_processor
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.train_dataloader = None
Expand Down Expand Up @@ -417,6 +420,7 @@ def call_event(self, event, args, state, control, **kwargs):
control,
model=self.model,
tokenizer=self.tokenizer,
image_processor=self.image_processor,
optimizer=self.optimizer,
lr_scheduler=self.lr_scheduler,
train_dataloader=self.train_dataloader,
Expand Down

0 comments on commit 1ab7136

Please sign in to comment.