Skip to content

Commit

Permalink
[Performance improvement] "Bad tokens ids" optimization (#6064)
Browse files Browse the repository at this point in the history
* Optimized banned token masking

* Avoid duplicate EOS masking if in bad_words_id

* Updated mask generation to handle empty banned token list

* Addition of unit tests for the updated bad_words_ids masking

* Updated timeout handling in `test_postprocess_next_token_scores_large_bad_words_list` unit test

* Updated timeout handling in `test_postprocess_next_token_scores_large_bad_words_list` unit test (timeout does not work on Windows)

* Moving Marian import to the test context to allow TF only environments to run

* Moving imports to torch_available test

* Updated operations device and test

* Updated operations device and test

* Added docstring and comment for in-place scores modification

* Moving test to own test_generation_utils, use of lighter models for testing

* removed unneded imports in test_modeling_common

* revert formatting change for ModelTesterMixin

* Updated caching, simplified eos token id test, removed unnecessary @require_torch

* formatting compliance
  • Loading branch information
guillaume-be authored Aug 11, 2020
1 parent 87e124c commit 4047829
Show file tree
Hide file tree
Showing 2 changed files with 121 additions and 6 deletions.
90 changes: 90 additions & 0 deletions src/transformers/data/test_generation_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import random
import unittest

import timeout_decorator

from transformers import is_torch_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch


if is_torch_available():
import torch

from transformers import (
MarianConfig,
MarianMTModel,
)


@require_torch
class GenerationUtilsTest(unittest.TestCase):
@cached_property
def config(self):
config = MarianConfig.from_pretrained("sshleifer/tiny-marian-en-de")
return config

@cached_property
def model(self):
return MarianMTModel(self.config)

def test_postprocess_next_token_scores(self):
config = self.config
model = self.model
# Initialize an input id tensor with batch size 8 and sequence length 12
input_ids = torch.arange(0, 96, 1).view((8, 12))
eos = config.eos_token_id
bad_words_ids_test_cases = [[[299]], [[23, 24], [54]], [[config.eos_token_id]], []]
masked_scores = [
[(0, 299), (1, 299), (2, 299), (3, 299), (4, 299), (5, 299), (6, 299), (7, 299)],
[(1, 24), (0, 54), (1, 54), (2, 54), (3, 54), (4, 54), (5, 54), (6, 54), (7, 54)],
[(0, eos), (1, eos), (2, eos), (3, eos), (4, eos), (5, eos), (6, eos), (7, eos)],
[],
]

for test_case_index, bad_words_ids in enumerate(bad_words_ids_test_cases):
# Initialize a scores tensor with batch size 8 and vocabulary size 300
scores = torch.rand((8, 300))
output = model.postprocess_next_token_scores(
scores,
input_ids,
0,
bad_words_ids,
13,
15,
config.max_length,
config.eos_token_id,
config.repetition_penalty,
32,
5,
)
for masked_score in masked_scores[test_case_index]:
self.assertTrue(output[masked_score[0], masked_score[1]] == -float("inf"))

@timeout_decorator.timeout(10)
def test_postprocess_next_token_scores_large_bad_words_list(self):

config = self.config
model = self.model
# Initialize an input id tensor with batch size 8 and sequence length 12
input_ids = torch.arange(0, 96, 1).view((8, 12))

bad_words_ids = []
for _ in range(100):
length_bad_word = random.randint(1, 4)
bad_words_ids.append(random.sample(range(1, 300), length_bad_word))

scores = torch.rand((8, 300))
_ = model.postprocess_next_token_scores(
scores,
input_ids,
0,
bad_words_ids,
13,
15,
config.max_length,
config.eos_token_id,
config.repetition_penalty,
32,
5,
)
37 changes: 31 additions & 6 deletions src/transformers/generation_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
# limitations under the License.

import logging
from typing import Iterable, Optional, Tuple
from typing import Iterable, List, Optional, Tuple

import torch
from torch import Tensor
Expand Down Expand Up @@ -89,11 +89,12 @@ def postprocess_next_token_scores(
scores[i, banned_tokens] = -float("inf")

if bad_words_ids is not None:
# Exclude EOS token (already processed)
bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids))
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)

for i, banned_tokens in enumerate(banned_tokens):
scores[i, banned_tokens] = -float("inf")
banned_tokens = calc_banned_bad_words_ids(input_ids.tolist(), bad_words_ids)
# Modify the scores in place by setting the banned tokens logits to `-inf`
set_scores_to_inf_for_banned_tokens(scores, banned_tokens)

return scores

Expand Down Expand Up @@ -893,7 +894,7 @@ def _tokens_match(prev_tokens, tokens):
bad_words_ids
)

if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False:
if _tokens_match(prev_input_ids_slice, banned_token_seq[:-1]) is False:
# if tokens do not match continue
continue

Expand All @@ -904,6 +905,30 @@ def _tokens_match(prev_tokens, tokens):
return banned_tokens


def set_scores_to_inf_for_banned_tokens(scores: torch.Tensor, banned_tokens: List[List[int]]) -> None:
""" Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be
a list of list of banned tokens to ban in the format [[batch index, vocabulary position],...]
Args:
scores: logits distribution of shape (batch size, vocabulary size)
banned_tokens: list of list of tokens to ban of length (batch_size)
"""
banned_mask_list = []
for idx, batch_banned_tokens in enumerate(banned_tokens):
for token in batch_banned_tokens:
banned_mask_list.append([idx, token])
if not banned_mask_list:
return
banned_mask = torch.LongTensor(banned_mask_list)
indices = torch.ones(len(banned_mask))
# A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates:
# [ 0 1 1 ]
# [ 0 0 0 ]
# [ 1 0 0 ]

banned_mask = torch.sparse.LongTensor(banned_mask.t(), indices, scores.size()).to(scores.device).to_dense().bool()
scores.masked_fill_(banned_mask, -float("inf"))


def top_k_top_p_filtering(
logits: Tensor,
top_k: int = 0,
Expand Down

0 comments on commit 4047829

Please sign in to comment.