Skip to content

Commit

Permalink
Add type hints for several pytorch models (batch-3) (#25705)
Browse files Browse the repository at this point in the history
* Add missing type hints for ErnieM family

* Add missing type hints for EsmForProteinFolding model

* Add missing type hints for Graphormer model

* Add type hints for InstructBlipQFormer model

* Add missing type hints for LayoutLMForMaskedLM model

* Add missing type hints for LukeForEntitySpanClassification model
  • Loading branch information
nablabits authored Aug 25, 2023
1 parent 8b0a7bf commit 4d9e45f
Show file tree
Hide file tree
Showing 6 changed files with 26 additions and 26 deletions.
12 changes: 6 additions & 6 deletions src/transformers/models/ernie_m/modeling_ernie_m.py
Original file line number Diff line number Diff line change
Expand Up @@ -538,7 +538,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.")

Expand Down Expand Up @@ -647,7 +647,7 @@ def forward(
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = True,
labels: Optional[torch.Tensor] = None,
):
) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Expand Down Expand Up @@ -744,7 +744,7 @@ def forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
):
) -> Union[Tuple[torch.FloatTensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
Expand Down Expand Up @@ -837,7 +837,7 @@ def forward(
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = True,
labels: Optional[torch.Tensor] = None,
):
) -> Union[Tuple[torch.FloatTensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Expand Down Expand Up @@ -914,7 +914,7 @@ def forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
):
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Expand Down Expand Up @@ -1003,7 +1003,7 @@ def forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
):
) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for position (index) for computing the start_positions loss. Position outside of the sequence are
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/esm/modeling_esmfold.py
Original file line number Diff line number Diff line change
Expand Up @@ -2086,11 +2086,11 @@ def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor:
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
masking_pattern: Optional[torch.Tensor] = None,
num_recycles: Optional[int] = None,
):
) -> EsmForProteinFoldingOutput:
r"""
Returns:
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/graphormer/modeling_graphormer.py
Original file line number Diff line number Diff line change
Expand Up @@ -816,8 +816,8 @@ def forward(
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
perturb=None,
masked_tokens=None,
perturb: Optional[torch.FloatTensor] = None,
masked_tokens: None = None,
return_dict: Optional[bool] = None,
**unused,
) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]:
Expand Down
26 changes: 13 additions & 13 deletions src/transformers/models/instructblip/modeling_instructblip.py
Original file line number Diff line number Diff line change
Expand Up @@ -1124,19 +1124,19 @@ def get_extended_attention_mask(

def forward(
self,
input_ids,
attention_mask=None,
position_ids=None,
query_embeds=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
query_embeds: Optional[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/layoutlm/modeling_layoutlm.py
Original file line number Diff line number Diff line change
Expand Up @@ -891,8 +891,8 @@ def forward(
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/luke/modeling_luke.py
Original file line number Diff line number Diff line change
Expand Up @@ -1664,7 +1664,7 @@ def __init__(self, config):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask=None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
Expand Down

0 comments on commit 4d9e45f

Please sign in to comment.