Skip to content

Commit

Permalink
updated with latest PL and Ray (#15653)
Browse files Browse the repository at this point in the history
  • Loading branch information
Shamane Siri authored Feb 15, 2022
1 parent 7bc4a01 commit 80f1a59
Show file tree
Hide file tree
Showing 4 changed files with 21 additions and 9 deletions.
2 changes: 1 addition & 1 deletion examples/research_projects/rag/callbacks_rag.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def get_checkpoint_callback(output_dir, metric):
monitor=f"val_{metric}",
mode="max",
save_top_k=3,
period=1, # maybe save a checkpoint every time val is run, not just end of epoch.
every_n_epochs=1, # maybe save a checkpoint every time val is run, not just end of epoch.
)
return checkpoint_callback

Expand Down
4 changes: 2 additions & 2 deletions examples/research_projects/rag/finetune_rag.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,7 +254,7 @@ def pad(self) -> int:
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)

logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
logs = {name: loss.detach() for name, loss in zip(self.loss_names, loss_tensors)}
# tokens per batch
tgt_pad_token_id = (
self.tokenizer.generator.pad_token_id
Expand Down Expand Up @@ -517,7 +517,7 @@ def main(args=None, model=None) -> GenerativeQAModule:
raise RuntimeError("Please install Ray to use the Ray " "distributed retriever.")
# Connect to an existing Ray cluster.
try:
ray.init(address=args.ray_address)
ray.init(address=args.ray_address, namespace="rag")
except (ConnectionError, ValueError):
logger.warning(
"Connection to Ray cluster failed. Make sure a Ray"
Expand Down
19 changes: 15 additions & 4 deletions examples/research_projects/rag/lightning_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,6 +266,15 @@ def add_model_specific_args(parser, root_dir):
parser.add_argument("--adafactor", action="store_true")


class InitCallback(pl.Callback):
# This method is better that using a custom DDP plugging with the latest pytorch-lightning (@shamanez)
def on_sanity_check_start(self, trainer, pl_module):
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.


class LoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lr_scheduler = trainer.lr_schedulers[0]["scheduler"]
Expand Down Expand Up @@ -368,19 +377,21 @@ def generic_train(
# TODO: remove with PyTorch 1.6 since pl uses native amp
if args.fp16:
train_params["precision"] = 16
train_params["amp_level"] = args.fp16_opt_level
# train_params["amp_level"] = args.fp16_opt_level

if args.gpus > 1:
train_params["accelerator"] = "ddp"
train_params["accelerator"] = "auto" # "ddp"
train_params["strategy"] = "ddp"

train_params["accumulate_grad_batches"] = args.accumulate_grad_batches
train_params["profiler"] = None # extra_train_kwargs.get("profiler", None) #get unwanted logs
train_params["devices"] = "auto"

trainer = pl.Trainer.from_argparse_args(
args,
weights_summary=None,
callbacks=[logging_callback] + extra_callbacks + [checkpoint_callback],
plugins=[custom_ddp_plugin],
callbacks=[logging_callback] + extra_callbacks + [checkpoint_callback] + [InitCallback()],
# plugins=[custom_ddp_plugin],
logger=logger,
**train_params,
)
Expand Down
5 changes: 3 additions & 2 deletions examples/research_projects/rag/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ faiss-cpu >= 1.6.3
datasets >= 1.0.1
psutil >= 5.7.0
torch >= 1.4.0
ray >= 1.10.0
pytorch-lightning >= 1.5.10
transformers
pytorch-lightning
GitPython
GitPython

0 comments on commit 80f1a59

Please sign in to comment.