Skip to content

Commit

Permalink
model_summary.md - moves the Annotated Transformer link in a praenthe…
Browse files Browse the repository at this point in the history
…sis next to the link to the original paper (commit pt. 2, accidentally removed "has" in pt. 1)
  • Loading branch information
gamepad-coder authored Mar 23, 2024
1 parent 3d0ec4d commit 9378f4d
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion docs/source/en/model_summary.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.

# The Transformer model family

Since its introduction in 2017, the [original Transformer](https://arxiv.org/abs/1706.03762) model (see the [Annotated Transformer](http://nlp.seas.harvard.edu/2018/04/03/attention.html) blog post for a gentle technical introduction) inspired many new and exciting models that extend beyond natural language processing (NLP) tasks. There are models for [predicting the folded structure of proteins](https://huggingface.co/blog/deep-learning-with-proteins), [training a cheetah to run](https://huggingface.co/blog/train-decision-transformers), and [time series forecasting](https://huggingface.co/blog/time-series-transformers). With so many Transformer variants available, it can be easy to miss the bigger picture. What all these models have in common is they're based on the original Transformer architecture. Some models only use the encoder or decoder, while others use both. This provides a useful taxonomy to categorize and examine the high-level differences within models in the Transformer family, and it'll help you understand Transformers you haven't encountered before.
Since its introduction in 2017, the [original Transformer](https://arxiv.org/abs/1706.03762) model (see the [Annotated Transformer](http://nlp.seas.harvard.edu/2018/04/03/attention.html) blog post for a gentle technical introduction) has inspired many new and exciting models that extend beyond natural language processing (NLP) tasks. There are models for [predicting the folded structure of proteins](https://huggingface.co/blog/deep-learning-with-proteins), [training a cheetah to run](https://huggingface.co/blog/train-decision-transformers), and [time series forecasting](https://huggingface.co/blog/time-series-transformers). With so many Transformer variants available, it can be easy to miss the bigger picture. What all these models have in common is they're based on the original Transformer architecture. Some models only use the encoder or decoder, while others use both. This provides a useful taxonomy to categorize and examine the high-level differences within models in the Transformer family, and it'll help you understand Transformers you haven't encountered before.

If you aren't familiar with the original Transformer model or need a refresher, check out the [How do Transformers work](https://huggingface.co/course/chapter1/4?fw=pt) chapter from the Hugging Face course.

Expand Down

0 comments on commit 9378f4d

Please sign in to comment.