Skip to content

Commit

Permalink
Clean-up deprecated code (#33446)
Browse files Browse the repository at this point in the history
* update

* update modeling
  • Loading branch information
zucchini-nlp authored Sep 12, 2024
1 parent 8ed6352 commit c8ea675
Show file tree
Hide file tree
Showing 4 changed files with 5 additions and 55 deletions.
19 changes: 0 additions & 19 deletions src/transformers/models/fuyu/configuration_fuyu.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,6 @@
# limitations under the License.
"""Fuyu model configuration"""

import warnings

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
Expand Down Expand Up @@ -207,20 +205,3 @@ def _rope_scaling_validation(self):
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")

@property
def vocab_size(self):
warnings.warn(
"The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.",
FutureWarning,
)
return self._vocab_size

@vocab_size.setter
def vocab_size(self, value):
self._vocab_size = value

def to_dict(self):
output = super().to_dict()
output.pop("_vocab_size", None)
return output
13 changes: 2 additions & 11 deletions src/transformers/models/fuyu/modeling_fuyu.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,15 +183,6 @@ def get_decoder(self):
def tie_weights(self):
return self.language_model.tie_weights()

def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
# TODO: config.vocab_size is deprecated and will be removed in v4.43.
# `resize_token_embeddings` should work from `modeling_utils.py``
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds

def gather_continuous_embeddings(
self,
word_embeddings: torch.Tensor,
Expand Down Expand Up @@ -254,8 +245,8 @@ def forward(
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
Returns:
Expand Down
13 changes: 0 additions & 13 deletions src/transformers/models/paligemma/configuration_paligemma.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,20 +141,7 @@ def ignore_index(self):
def ignore_index(self, value):
self._ignore_index = value

@property
def vocab_size(self):
warnings.warn(
"The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.",
FutureWarning,
)
return self._vocab_size

@vocab_size.setter
def vocab_size(self, value):
self._vocab_size = value

def to_dict(self):
output = super().to_dict()
output.pop("_vocab_size", None)
output.pop("_ignore_index", None)
return output
15 changes: 3 additions & 12 deletions src/transformers/models/paligemma/modeling_paligemma.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ class PaliGemmaCausalLMOutputWithPast(ModelOutput):
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
Expand Down Expand Up @@ -283,15 +283,6 @@ def get_decoder(self):
def tie_weights(self):
return self.language_model.tie_weights()

def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
# TODO: config.vocab_size is deprecated and will be removed in v4.43.
# `resize_token_embeddings` should work from `modeling_utils.py``
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds

def _update_causal_mask(
self, attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training: bool = False
):
Expand Down Expand Up @@ -362,8 +353,8 @@ def forward(
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
Expand Down

0 comments on commit c8ea675

Please sign in to comment.