Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enforce string-formatting with f-strings #10980

Merged
merged 9 commits into from
Mar 31, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/language-modeling/run_clm.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ def main():
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
2 changes: 1 addition & 1 deletion examples/language-modeling/run_mlm.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@ def main():
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
12 changes: 4 additions & 8 deletions examples/language-modeling/run_mlm_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ def step_fn(step):
progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle))
ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0))))
else:
raise ValueError("Unknown factor %s." % name)
raise ValueError(f"Unknown factor {name}.")
return jnp.asarray(ret, dtype=jnp.float32)

return step_fn
Expand All @@ -332,9 +332,7 @@ def accuracy(logits, targets, weights=None):
Tuple of scalar loss and batch normalizing factor.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError(
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
)
raise ValueError(f"Incorrect shapes. Got shape {logits.shape} logits and {targets.shape} targets")

loss = jnp.equal(jnp.argmax(logits, axis=-1), targets)
loss *= weights
Expand All @@ -353,9 +351,7 @@ def cross_entropy(logits, targets, weights=None, label_smoothing=0.0):
Tuple of scalar loss and batch normalizing factor.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError(
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
)
raise ValueError(f"Incorrect shapes. Got shape {logits.shape} logits and {targets.shape} targets")

vocab_size = logits.shape[-1]
confidence = 1.0 - label_smoothing
Expand Down Expand Up @@ -463,7 +459,7 @@ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndar
)

# Set the verbosity to info of the Transformers logger (on main process only):
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
2 changes: 1 addition & 1 deletion examples/language-modeling/run_plm.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ def main():
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
2 changes: 1 addition & 1 deletion examples/multiple-choice/run_swag.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ def main():
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
14 changes: 6 additions & 8 deletions examples/multiple-choice/run_tf_multiple_choice.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,12 +116,10 @@ def main():
level=logging.INFO,
)
logger.warning(
"device: %s, n_replicas: %s, 16-bits training: %s",
training_args.device,
training_args.n_replicas,
training_args.fp16,
f"device: {training_args.device}, n_replicas: {training_args.n_replicas}, "
f"16-bits training: {training_args.fp16}"
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed
set_seed(training_args.seed)
Expand All @@ -131,7 +129,7 @@ def main():
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
raise ValueError(f"Task not found: {data_args.task_name}")

# Load pretrained model and tokenizer
#
Expand Down Expand Up @@ -210,8 +208,8 @@ def compute_metrics(p: EvalPrediction) -> Dict:
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")

results.update(result)

Expand Down
58 changes: 26 additions & 32 deletions examples/multiple-choice/utils_multiple_choice.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,13 +99,7 @@ def __init__(
processor = processors[task]()

cached_features_file = os.path.join(
data_dir,
"cached_{}_{}_{}_{}".format(
mode.value,
tokenizer.__class__.__name__,
str(max_seq_length),
task,
),
data_dir, f"cached_{mode.value}_{tokenizer.__class__.__name__}_{max_seq_length}_{task}"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So much cleaner!

)

# Make sure only the first process in distributed training processes the dataset,
Expand All @@ -125,14 +119,14 @@ def __init__(
examples = processor.get_test_examples(data_dir)
else:
examples = processor.get_train_examples(data_dir)
logger.info("Training examples: %s", len(examples))
logger.info(f"Training examples: {len(examples)}")
self.features = convert_examples_to_features(
examples,
label_list,
max_seq_length,
tokenizer,
)
logger.info("Saving features into cached file %s", cached_features_file)
logger.info(f"Saving features into cached file {cached_features_file}")
torch.save(self.features, cached_features_file)

def __len__(self):
Expand Down Expand Up @@ -172,7 +166,7 @@ def __init__(
examples = processor.get_test_examples(data_dir)
else:
examples = processor.get_train_examples(data_dir)
logger.info("Training examples: %s", len(examples))
logger.info(f"Training examples: {len(examples)}")

self.features = convert_examples_to_features(
examples,
Expand All @@ -184,7 +178,7 @@ def __init__(
def gen():
for (ex_index, ex) in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
logger.info(f"Writing example {ex_index} of {len(examples)}")

yield (
{
Expand Down Expand Up @@ -255,7 +249,7 @@ class RaceProcessor(DataProcessor):

def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
high = os.path.join(data_dir, "train/high")
middle = os.path.join(data_dir, "train/middle")
high = self._read_txt(high)
Expand All @@ -264,7 +258,7 @@ def get_train_examples(self, data_dir):

def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
high = os.path.join(data_dir, "dev/high")
middle = os.path.join(data_dir, "dev/middle")
high = self._read_txt(high)
Expand All @@ -273,7 +267,7 @@ def get_dev_examples(self, data_dir):

def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} test".format(data_dir))
logger.info(f"LOOKING AT {data_dir} test")
high = os.path.join(data_dir, "test/high")
middle = os.path.join(data_dir, "test/middle")
high = self._read_txt(high)
Expand All @@ -298,7 +292,7 @@ def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (_, data_raw) in enumerate(lines):
race_id = "%s-%s" % (set_type, data_raw["race_id"])
race_id = f"{set_type}-{data_raw['race_id']}"
article = data_raw["article"]
for i in range(len(data_raw["answers"])):
truth = str(ord(data_raw["answers"][i]) - ord("A"))
Expand All @@ -322,17 +316,17 @@ class SynonymProcessor(DataProcessor):

def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train")

def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev")

def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")

return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test")

Expand Down Expand Up @@ -368,17 +362,17 @@ class SwagProcessor(DataProcessor):

def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")

def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")

def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
raise ValueError(
"For swag testing, the input file does not contain a label column. It can not be tested in current code"
"setting!"
Expand Down Expand Up @@ -419,16 +413,16 @@ class ArcProcessor(DataProcessor):

def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")

def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")

def get_test_examples(self, data_dir):
logger.info("LOOKING AT {} test".format(data_dir))
logger.info(f"LOOKING AT {data_dir} test")
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")

def get_labels(self):
Expand All @@ -450,7 +444,7 @@ def normalize(truth):
elif truth in "1234":
return int(truth) - 1
else:
logger.info("truth ERROR! %s", str(truth))
logger.info(f"truth ERROR! {truth}")
return None

examples = []
Expand Down Expand Up @@ -496,11 +490,11 @@ def normalize(truth):
if type == "train":
assert len(examples) > 1
assert examples[0].label is not None
logger.info("len examples: %s}", str(len(examples)))
logger.info("Three choices: %s", str(three_choice))
logger.info("Five choices: %s", str(five_choice))
logger.info("Other choices: %s", str(other_choices))
logger.info("four choices: %s", str(four_choice))
logger.info(f"len examples: {len(examples)}")
logger.info(f"Three choices: {three_choice}")
logger.info(f"Five choices: {five_choice}")
logger.info(f"Other choices: {other_choices}")
logger.info(f"four choices: {four_choice}")

return examples

Expand All @@ -520,7 +514,7 @@ def convert_examples_to_features(
features = []
for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
logger.info(f"Writing example {ex_index} of {len(examples)}")
choices_inputs = []
for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
text_a = context
Expand Down Expand Up @@ -570,7 +564,7 @@ def convert_examples_to_features(

for f in features[:2]:
logger.info("*** Example ***")
logger.info("feature: %s" % f)
logger.info("feature: {f}")

return features

Expand Down
2 changes: 1 addition & 1 deletion examples/question-answering/run_qa.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,7 @@ def main():
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
2 changes: 1 addition & 1 deletion examples/question-answering/run_qa_beam_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ def main():
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
8 changes: 3 additions & 5 deletions examples/question-answering/run_tf_squad.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,12 +148,10 @@ def main():
level=logging.INFO,
)
logger.info(
"n_replicas: %s, distributed training: %s, 16-bits training: %s",
training_args.n_replicas,
bool(training_args.n_replicas > 1),
training_args.fp16,
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
f"16-bits training: {training_args.fp16}"
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Prepare Question-Answering task
# Load pretrained model and tokenizer
Expand Down
2 changes: 1 addition & 1 deletion examples/seq2seq/run_summarization.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,7 @@ def main():
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
2 changes: 1 addition & 1 deletion examples/seq2seq/run_translation.py
Original file line number Diff line number Diff line change
Expand Up @@ -264,7 +264,7 @@ def main():
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

# Set seed before initializing model.
set_seed(training_args.seed)
Expand Down
14 changes: 6 additions & 8 deletions examples/text-classification/run_tf_glue.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,18 +160,16 @@ def main():
level=logging.INFO,
)
logger.info(
"n_replicas: %s, distributed training: %s, 16-bits training: %s",
training_args.n_replicas,
bool(training_args.n_replicas > 1),
training_args.fp16,
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
f"16-bits training: {training_args.fp16}",
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info(f"Training/evaluation parameters {training_args}")

try:
num_labels = glue_tasks_num_labels["mnli" if data_args.task_name == "mnli-mm" else data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
raise ValueError(f"Task not found: {data_args.task_name}")

# Load pretrained model and tokenizer
#
Expand Down Expand Up @@ -255,8 +253,8 @@ def compute_metrics(p: EvalPrediction) -> Dict:
logger.info("***** Eval results *****")

for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")

results.update(result)

Expand Down
Loading