Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix distributed gather for tuples of tensors of varying sizes #11071

Merged
merged 1 commit into from
Apr 5, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 9 additions & 22 deletions src/transformers/trainer_pt_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,11 +276,8 @@ def nested_new_like(arrays, num_samples, padding_index=-100):
return np.full_like(arrays, padding_index, shape=(num_samples, *arrays.shape[1:]))


def nested_expand_like(arrays, new_seq_length, padding_index=-100):
def expand_like(arrays, new_seq_length, padding_index=-100):
""" Expand the `arrays` so that the second dimension grows to `new_seq_length`. Uses `padding_index` for padding."""
if isinstance(arrays, (list, tuple)):
return type(arrays)(nested_expand_like(x, new_seq_length, padding_index=padding_index) for x in arrays)

result = np.full_like(arrays, padding_index, shape=(arrays.shape[0], new_seq_length) + arrays.shape[2:])
result[:, : arrays.shape[1]] = arrays
return result
Expand All @@ -293,13 +290,6 @@ def nested_truncate(tensors, limit):
return tensors[:limit]


def _get_first_shape(arrays):
"""Return the shape of the first array found in the nested struct `arrays`."""
if isinstance(arrays, (list, tuple)):
return _get_first_shape(arrays[0])
return arrays.shape


class DistributedTensorGatherer:
"""
A class responsible for properly gathering tensors (or nested list/tuple of tensors) on the CPU by chunks.
Expand Down Expand Up @@ -367,21 +357,15 @@ def add_arrays(self, arrays):
if self._storage is None:
self._storage = nested_new_like(arrays, self.total_samples, padding_index=self.padding_index)
self._offsets = list(range(0, self.total_samples, self.process_length))
else:
storage_shape = _get_first_shape(self._storage)
arrays_shape = _get_first_shape(arrays)
if len(storage_shape) > 1 and storage_shape[1] < arrays_shape[1]:
# If we get new arrays that are too big too fit, we expand the shape fo the storage
self._storage = nested_expand_like(self._storage, arrays_shape[1], padding_index=self.padding_index)
slice_len = self._nested_set_tensors(self._storage, arrays)

slice_len, self._storage = self._nested_set_tensors(self._storage, arrays)
for i in range(self.world_size):
self._offsets[i] += slice_len

def _nested_set_tensors(self, storage, arrays):
if isinstance(arrays, (list, tuple)):
for x, y in zip(storage, arrays):
slice_len = self._nested_set_tensors(x, y)
return slice_len
result = [self._nested_set_tensors(x, y) for x, y in zip(storage, arrays)]
return result[0][0], type(arrays)(r[1] for r in result)
assert (
arrays.shape[0] % self.world_size == 0
), f"Arrays passed should all have a first dimension multiple of {self.world_size}, found {arrays.shape[0]}."
Expand All @@ -391,10 +375,13 @@ def _nested_set_tensors(self, storage, arrays):
if len(arrays.shape) == 1:
storage[self._offsets[i] : self._offsets[i] + slice_len] = arrays[i * slice_len : (i + 1) * slice_len]
else:
# Expand the array on the fly if needed.
if len(storage.shape) > 1 and storage.shape[1] < arrays.shape[1]:
storage = expand_like(storage, arrays.shape[1], padding_index=self.padding_index)
storage[self._offsets[i] : self._offsets[i] + slice_len, : arrays.shape[1]] = arrays[
i * slice_len : (i + 1) * slice_len
]
return slice_len
return slice_len, storage

def finalize(self):
"""
Expand Down
43 changes: 43 additions & 0 deletions tests/test_trainer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,49 @@ def test_distributed_tensor_gatherer(self):
self.assertTrue(np.array_equal(result[1][0], predictions))
self.assertTrue(np.array_equal(result[1][1], predictions))

def test_distributed_tensor_gatherer_different_shapes(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
sequence_lengths = [8, 10, 13]

predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays(predictions[indices, :seq_length])
result = gatherer.finalize()

# Remove the extra samples added at the end for a round multiple of num processes.
actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))

# With nested tensors
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
result = gatherer.finalize()

for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
self.assertTrue(np.array_equal(result[1], predictions))

# Check if works if varying seq_length is second
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
result = gatherer.finalize()

self.assertTrue(np.array_equal(result[0], predictions))
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))

def test_label_smoothing(self):
epsilon = 0.1
num_labels = 12
Expand Down