Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding pipeline task aliases. #11247

Merged
merged 2 commits into from
Apr 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions src/transformers/commands/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

from argparse import ArgumentParser

from ..pipelines import SUPPORTED_TASKS, Pipeline, PipelineDataFormat, pipeline
from ..pipelines import SUPPORTED_TASKS, TASK_ALIASES, Pipeline, PipelineDataFormat, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand

Expand Down Expand Up @@ -63,7 +63,9 @@ def __init__(self, nlp: Pipeline, reader: PipelineDataFormat):
@staticmethod
def register_subcommand(parser: ArgumentParser):
run_parser = parser.add_parser("run", help="Run a pipeline through the CLI")
run_parser.add_argument("--task", choices=SUPPORTED_TASKS.keys(), help="Task to run")
run_parser.add_argument(
"--task", choices=list(SUPPORTED_TASKS.keys()) + list(TASK_ALIASES.keys()), help="Task to run"
)
run_parser.add_argument("--input", type=str, help="Path to the file to use for inference")
run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.")
run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.")
Expand Down
7 changes: 5 additions & 2 deletions src/transformers/commands/serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional

from ..pipelines import SUPPORTED_TASKS, Pipeline, pipeline
from ..pipelines import SUPPORTED_TASKS, TASK_ALIASES, Pipeline, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand

Expand Down Expand Up @@ -102,7 +102,10 @@ def register_subcommand(parser: ArgumentParser):
"serve", help="CLI tool to run inference requests through REST and GraphQL endpoints."
)
serve_parser.add_argument(
"--task", type=str, choices=SUPPORTED_TASKS.keys(), help="The task to run the pipeline on"
"--task",
type=str,
choices=list(SUPPORTED_TASKS.keys()) + list(TASK_ALIASES.keys()),
help="The task to run the pipeline on",
)
serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.")
serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.")
Expand Down
24 changes: 18 additions & 6 deletions src/transformers/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,14 +93,18 @@


# Register all the supported tasks here
TASK_ALIASES = {
"sentiment-analysis": "text-classification",
"ner": "token-classification",
}
SUPPORTED_TASKS = {
"feature-extraction": {
"impl": FeatureExtractionPipeline,
"tf": TFAutoModel if is_tf_available() else None,
"pt": AutoModel if is_torch_available() else None,
"default": {"model": {"pt": "distilbert-base-cased", "tf": "distilbert-base-cased"}},
},
"sentiment-analysis": {
"text-classification": {
"impl": TextClassificationPipeline,
"tf": TFAutoModelForSequenceClassification if is_tf_available() else None,
"pt": AutoModelForSequenceClassification if is_torch_available() else None,
Expand All @@ -111,7 +115,7 @@
},
},
},
"ner": {
"token-classification": {
"impl": TokenClassificationPipeline,
"tf": TFAutoModelForTokenClassification if is_tf_available() else None,
"pt": AutoModelForTokenClassification if is_torch_available() else None,
Expand Down Expand Up @@ -206,8 +210,10 @@ def check_task(task: str) -> Tuple[Dict, Any]:
The task defining which pipeline will be returned. Currently accepted tasks are:

- :obj:`"feature-extraction"`
- :obj:`"sentiment-analysis"`
- :obj:`"ner"`
- :obj:`"text-classification"`
- :obj:`"sentiment-analysis"` (alias of :obj:`"text-classification")
- :obj:`"token-classification"`
- :obj:`"ner"` (alias of :obj:`"token-classification")
- :obj:`"question-answering"`
- :obj:`"fill-mask"`
- :obj:`"summarization"`
Expand All @@ -222,6 +228,8 @@ def check_task(task: str) -> Tuple[Dict, Any]:


"""
if task in TASK_ALIASES:
task = TASK_ALIASES[task]
if task in SUPPORTED_TASKS:
targeted_task = SUPPORTED_TASKS[task]
return targeted_task, None
Expand Down Expand Up @@ -264,8 +272,12 @@ def pipeline(
The task defining which pipeline will be returned. Currently accepted tasks are:

- :obj:`"feature-extraction"`: will return a :class:`~transformers.FeatureExtractionPipeline`.
- :obj:`"sentiment-analysis"`: will return a :class:`~transformers.TextClassificationPipeline`.
- :obj:`"ner"`: will return a :class:`~transformers.TokenClassificationPipeline`.
- :obj:`"text-classification"`: will return a :class:`~transformers.TextClassificationPipeline`.
- :obj:`"sentiment-analysis"`: (alias of :obj:`"text-classification") will return a
:class:`~transformers.TextClassificationPipeline`.
- :obj:`"token-classification"`: will return a :class:`~transformers.TokenClassificationPipeline`.
- :obj:`"ner"` (alias of :obj:`"token-classification"): will return a
:class:`~transformers.TokenClassificationPipeline`.
- :obj:`"question-answering"`: will return a :class:`~transformers.QuestionAnsweringPipeline`.
- :obj:`"fill-mask"`: will return a :class:`~transformers.FillMaskPipeline`.
- :obj:`"summarization"`: will return a :class:`~transformers.SummarizationPipeline`.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
from .test_pipelines_common import MonoInputPipelineCommonMixin


class SentimentAnalysisPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
class TextClassificationPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "sentiment-analysis"
small_models = [
"sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]


class NerPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
class TokenClassificationPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "ner"
small_models = [
"sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
Expand Down