Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix arg name in BLOOM testing and remove unused arg document #18843

Merged
merged 3 commits into from
Sep 15, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 1 addition & 7 deletions src/transformers/models/bloom/configuration_bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,23 +60,17 @@ class BloomConfig(PretrainedConfig):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
skip_bias_add (`bool`, *optional*, defaults to `True`):
If set to `True`, it will skip bias add for each linear layer in the transformer blocks
skip_bias_add_qkv (`bool`, *optional*, defaults to `False`):
If set to `True`, it will skip bias add for the first linear layer in the transformer blocks
hidden_dropout (`float`, *optional*, defaults to 0.1):
Dropout rate of the dropout function on the bias dropout.
attention_dropout (`float`, *optional*, defaults to 0.1):
Dropout rate applied to the attention probs
use_cache (`bool`, *optional*, defaults to `True`):
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
pretraining_tp (`int`, *optional*, defaults to `1`):
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
Expand Down
8 changes: 4 additions & 4 deletions tests/models/bloom/test_modeling_bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def __init__(
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
attention_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
Expand All @@ -81,7 +81,7 @@ def __init__(
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.attention_dropout_prob = attention_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
Expand Down Expand Up @@ -118,8 +118,8 @@ def get_config(self, gradient_checkpointing=False, slow_but_exact=True):
hidden_size=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
resid_pdrop=self.hidden_dropout_prob,
attn_pdrop=self.attention_probs_dropout_prob,
hidden_dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_dropout_prob,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
Expand Down