Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Flax whisper gradient checkpointing #22897

Closed
84 changes: 58 additions & 26 deletions src/transformers/models/whisper/modeling_flax_whisper.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
Expand Down Expand Up @@ -53,6 +54,8 @@
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
_CONFIG_FOR_DOC = "WhisperConfig"

remat = nn_partitioning.remat


WHISPER_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
Expand Down Expand Up @@ -391,12 +394,20 @@ def __call__(
class FlaxWhisperEncoderLayerCollection(nn.Module):
config: WhisperConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False

def setup(self):
self.layers = [
FlaxWhisperEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
if self.gradient_checkpointing:
FlaxWhisperEncoderCheckpointLayer = remat(FlaxWhisperEncoderLayer, static_argnums=(2, 3))
self.layers = [
FlaxWhisperEncoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
else:
self.layers = [
FlaxWhisperEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop

def __call__(
Expand Down Expand Up @@ -535,12 +546,20 @@ def __call__(
class FlaxWhisperDecoderLayerCollection(nn.Module):
config: WhisperConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False

def setup(self):
self.layers = [
FlaxWhisperDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
if self.gradient_checkpointing:
FlaxWhisperDecoderCheckpointLayer = remat(FlaxWhisperDecoderLayer, static_argnums=(4, 5, 6))
self.layers = [
FlaxWhisperDecoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
versae marked this conversation as resolved.
Show resolved Hide resolved
]
else:
self.layers = [
FlaxWhisperDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop

def __call__(
Expand Down Expand Up @@ -570,12 +589,12 @@ def __call__(
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
attention_mask,
versae marked this conversation as resolved.
Show resolved Hide resolved
encoder_hidden_states,
encoder_attention_mask,
init_cache,
output_attentions,
deterministic,
)

hidden_states = layer_outputs[0]
Expand Down Expand Up @@ -605,6 +624,7 @@ def __call__(
class FlaxWhisperEncoder(nn.Module):
config: WhisperConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False

def setup(self) -> None:
self.conv1 = nn.Conv(
Expand All @@ -628,6 +648,7 @@ def setup(self) -> None:
self.layers = FlaxWhisperEncoderLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.embed_positions = nn.Embed(self.config.max_source_positions, self.config.d_model, dtype=self.dtype)

Expand Down Expand Up @@ -689,12 +710,13 @@ def __call__(
class FlaxWhisperDecoder(nn.Module):
config: WhisperConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False

def setup(self) -> None:
self.embed_tokens = nn.Embed(self.config.vocab_size, self.config.d_model, dtype=self.dtype)
self.embed_positions = nn.Embed(self.config.max_target_positions, self.config.d_model, dtype=self.dtype)

self.layers = FlaxWhisperDecoderLayerCollection(self.config, dtype=self.dtype)
self.layers = FlaxWhisperDecoderLayerCollection(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)

self.dropout_layer = nn.Dropout(rate=self.config.dropout)

Expand All @@ -720,13 +742,13 @@ def __call__(

outputs = self.layers(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
attention_mask,
encoder_hidden_states,
deterministic,
init_cache,
output_attentions,
output_hidden_states,
return_dict,
)

last_hidden_states = outputs[0]
Expand All @@ -753,10 +775,11 @@ def __call__(
class FlaxWhisperModule(nn.Module):
config: WhisperConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False

def setup(self) -> None:
self.encoder = FlaxWhisperEncoder(self.config, dtype=self.dtype)
self.decoder = FlaxWhisperDecoder(self.config, dtype=self.dtype)
self.encoder = FlaxWhisperEncoder(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.decoder = FlaxWhisperDecoder(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)

def __call__(
self,
Expand Down Expand Up @@ -821,11 +844,19 @@ def __init__(
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)

def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_features = jnp.zeros(input_shape, dtype="f4")
Expand Down Expand Up @@ -1137,9 +1168,10 @@ class FlaxWhisperModel(FlaxWhisperPreTrainedModel):
class FlaxWhisperForConditionalGenerationModule(nn.Module):
config: WhisperConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False

def setup(self) -> None:
self.model = FlaxWhisperModule(config=self.config, dtype=self.dtype)
self.model = FlaxWhisperModule(config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
Expand Down