Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. Weโ€™ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

๐ŸŒ [i18n-KO] Translated perf_hardware.md to Korean #24966

Merged
merged 16 commits into from
Jul 25, 2023
4 changes: 2 additions & 2 deletions docs/source/ko/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -128,8 +128,8 @@
- local: in_translation
title: (๋ฒˆ์—ญ์ค‘) Inference on Specialized Hardware
- local: in_translation
augustinLib marked this conversation as resolved.
Show resolved Hide resolved
title: (๋ฒˆ์—ญ์ค‘) Custom hardware for training
- local: in_translation
title: ํ›ˆ๋ จ์šฉ ๋งž์ถค ํ•˜๋“œ์›จ์–ด
- local: perf_hardware
augustinLib marked this conversation as resolved.
Show resolved Hide resolved
title: (๋ฒˆ์—ญ์ค‘) Instantiating a big model
- local: in_translation
title: (๋ฒˆ์—ญ์ค‘) Debugging
Expand Down
155 changes: 155 additions & 0 deletions docs/source/ko/perf_hardware.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->


# ํ›ˆ๋ จ์šฉ ์ปค์Šคํ…€ ํ•˜๋“œ์›จ์–ด [[custom-hardware-for-training]]
augustinLib marked this conversation as resolved.
Show resolved Hide resolved

๋ชจ๋ธ ํ›ˆ๋ จ๊ณผ ์ถ”๋ก ์— ์‚ฌ์šฉํ•˜๋Š” ํ•˜๋“œ์›จ์–ด๋Š” ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. GPU์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด๋ ค๋ฉด, Tim Dettmer์˜ ํ›Œ๋ฅญํ•œ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ๋ฅผ ํ™•์ธํ•ด๋ณด์„ธ์š”. [๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ ๋งํฌ](https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/) (์˜์–ด๋กœ ์ž‘์„ฑ๋จ).

GPU ์„ค์ •์— ๋Œ€ํ•œ ์‹ค์šฉ์ ์ธ ์กฐ์–ธ์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

## GPU [[gpu]]
๋” ํฐ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ฌ ๋•Œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ ์„ธ ๊ฐ€์ง€ ์˜ต์…˜์ด ์žˆ์Šต๋‹ˆ๋‹ค:
- ๋” ํฐ GPU
- ๋” ๋งŽ์€ GPU
- ๋” ๋งŽ์€ CPU ๋ฐ NVMe (DeepSpeed-Infinity๋ฅผ ํ†ตํ•œ offload)
augustinLib marked this conversation as resolved.
Show resolved Hide resolved

์šฐ์„ , ํ•˜๋‚˜์˜ GPU๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด๋ด…์‹œ๋‹ค.

### ์ „์› ๊ณต๊ธ‰๊ณผ ๋ƒ‰๊ฐ [[power-and-cooling]]

๋น„์‹ผ ๊ณ ์„ฑ๋Šฅ GPU๋ฅผ ๊ตฌ๋งคํ•œ ๊ฒฝ์šฐ, ์˜ฌ๋ฐ”๋ฅธ ์ „์› ๊ณต๊ธ‰๊ณผ ์ถฉ๋ถ„ํ•œ ๋ƒ‰๊ฐ์„ ์ œ๊ณตํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

**์ „์› ๊ณต๊ธ‰**:

์ผ๋ถ€ ๊ณ ์„ฑ๋Šฅ ์†Œ๋น„์ž์šฉ GPU๋Š” 2๊ฐœ ํ˜น์€ ๊ฐ€๋”๊ฐ€๋‹ค 3๊ฐœ์˜ PCI-E 8ํ•€ ์ „์› ์†Œ์ผ“์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋“œ์— ์žˆ๋Š” ์†Œ์ผ“ ์ˆ˜๋งŒํผ ๋…๋ฆฝ์ ์ธ 12V PCI-E 8ํ•€ ์ผ€์ด๋ธ”์ด ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”. ๊ฐ™์€ ์ผ€์ด๋ธ”์˜ ํ•œ์ชฝ ๋์— ์žˆ๋Š” 2๊ฐœ์˜ ์Šคํ”Œ๋ฆฟ(๋˜๋Š” pigtail ์ผ€์ด๋ธ”)์„ ์‚ฌ์šฉํ•˜์ง€ ๋งˆ์„ธ์š”. ์ฆ‰, GPU์— 2๊ฐœ์˜ ์†Œ์ผ“์ด ์žˆ๋‹ค๋ฉด, PSU(ํŒŒ์›Œ ์„œํ”Œ๋ผ์ด ์œ ๋‹›)์—์„œ ์นด๋“œ๋กœ ๊ฐ€๋Š” ์ผ€์ด๋ธ”์ด 2๊ฐœ์˜ PCI-E 8ํ•€ ์ปค๋„ฅํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค! ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด GPU์˜ ์ „์ฒด ์„ฑ๋Šฅ์„ ์ œ๋Œ€๋กœ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
augustinLib marked this conversation as resolved.
Show resolved Hide resolved

๊ฐ๊ฐ์˜ PCI-E 8ํ•€ ์ „์› ์ผ€์ด๋ธ”์€ PSU ์ชฝ์˜ 12V ๋ ˆ์ผ์— ์—ฐ๊ฒฐ๋˜์–ด์•ผ ํ•˜๋ฉฐ ์ตœ๋Œ€ 150W์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ผ๋ถ€ ๋‹ค๋ฅธ GPU๋Š” PCI-E 12ํ•€ ์ปค๋„ฅํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ปค๋„ฅํ„ฐ๋Š” ์ตœ๋Œ€ 500-600W์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ €๊ฐ€ํ˜• GPU๋Š” 6ํ•€ ์ปค๋„ฅํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ตœ๋Œ€ 75W์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.

๋˜ํ•œ GPU๊ฐ€ ์•ˆ์ •์ ์ธ ์ „์••์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ๊ณ ๊ธ‰ PSU๋ฅผ ์„ ํƒํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ €ํ’ˆ์งˆ์˜ PSU๋Š” GPU๊ฐ€ ์ตœ๊ณ  ์„ฑ๋Šฅ์œผ๋กœ ๋™์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์ „์••์„ ์•ˆ์ •์ ์œผ๋กœ ๊ณต๊ธ‰ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
augustinLib marked this conversation as resolved.
Show resolved Hide resolved

๋ฌผ๋ก , PSU๋Š” GPU๋ฅผ ๊ตฌ๋™์‹œํ‚ค๊ธฐ์— ์ถฉ๋ถ„ํ•œ ์—ฌ๋ถ„์˜ ์ „๋ ฅ ์šฉ๋Ÿ‰์„ ๊ฐ€์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
augustinLib marked this conversation as resolved.
Show resolved Hide resolved

**๋ƒ‰๊ฐ**:

GPU๊ฐ€ ๊ณผ์—ด๋˜๋ฉด ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๊ณ  ์ตœ๋Œ€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋„ˆ๋ฌด ๋œจ๊ฑฐ์›Œ์ง€๋ฉด ์ค‘์ง€๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

GPU๊ฐ€ ๊ณผ์—ด๋  ๋•Œ ์ •ํ™•ํ•œ ์ ์ • ์˜จ๋„๋ฅผ ์•Œ๊ธฐ ์–ด๋ ค์šฐ๋‚˜, ์•„๋งˆ๋„ +80๋„C ๋ฏธ๋งŒ์ด๋ฉด ์ข‹์ง€๋งŒ ๋” ๋‚ฎ์„์ˆ˜๋ก ์ข‹์Šต๋‹ˆ๋‹ค. 70โ„ƒ-75โ„ƒ ์ •๋„๊ฐ€ ํ›Œ๋ฅญํ•œ ์˜จ๋„ ๋ฒ”์œ„์ž…๋‹ˆ๋‹ค. ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์‹œ์ž‘ํ•˜๋Š” ์˜จ๋„๋Š” ๋Œ€๋žต 84โ„ƒ-90โ„ƒ ์ •๋„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ฑ๋Šฅ ์ €ํ•˜ ์ด์™ธ์—๋„ ์ง€์†์ ์œผ๋กœ ๋งค์šฐ ๋†’์€ ์˜จ๋„๋Š” GPU ์ˆ˜๋ช…์„ ๋‹จ์ถ•์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
augustinLib marked this conversation as resolved.
Show resolved Hide resolved

์ด์–ด์„œ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ GPU๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ธก๋ฉด ์ค‘ ํ•˜๋‚˜์ธ GPU ๊ฐ„ ์—ฐ๊ฒฐ ๋ฐฉ์‹์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

### ๋‹ค์ค‘ GPU ์—ฐ๊ฒฐ ๋ฐฉ์‹ [[multigpu-connectivity]]

๋‹ค์ค‘ GPU๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ GPU ๊ฐ„์˜ ์—ฐ๊ฒฐ ๋ฐฉ์‹์€ ์ „์ฒด ํ›ˆ๋ จ ์‹œ๊ฐ„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ GPU๊ฐ€ ๋™์ผํ•œ ๋ฌผ๋ฆฌ์  ๋…ธ๋“œ์— ์žˆ์„ ๊ฒฝ์šฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```
nvidia-smi topo -m
```

๋งŒ์•ฝ NVLink๋กœ ์—ฐ๊ฒฐ๋œ ๋“€์–ผ GPU ํ™˜๊ฒฝ์ด๋ผ๋ฉด, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```
GPU0 GPU1 CPU Affinity NUMA Affinity
GPU0 X NV2 0-23 N/A
GPU1 NV2 X 0-23 N/A
```

NVLink๋ฅผ ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๋‹ค๋ฅธ ํ™˜๊ฒฝ์˜ ๊ฒฝ์šฐ์—๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```
GPU0 GPU1 CPU Affinity NUMA Affinity
GPU0 X PHB 0-11 N/A
GPU1 PHB X 0-11 N/A
```

์ด ๊ฒฐ๊ณผ์—๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฒ”๋ก€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค:

```
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
```

๋”ฐ๋ผ์„œ ์ฒซ ๋ฒˆ์งธ ๊ฒฐ๊ณผ์˜ `NV2`๋Š” GPU๊ฐ€ 2๊ฐœ์˜ NVLink๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ด๊ณ , ๋‘ ๋ฒˆ์งธ ๊ฒฐ๊ณผ์˜ `PHB`๋Š” ์ผ๋ฐ˜์ ์ธ ์†Œ๋น„์ž์šฉ PCIe+๋ธŒ๋ฆฟ์ง€ ์„ค์ •์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

์„ค์ •์—์„œ ์–ด๋–ค ์œ ํ˜•์˜ ์—ฐ๊ฒฐ ๋ฐฉ์‹์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”. ์ผ๋ถ€ ์—ฐ๊ฒฐ ๋ฐฉ์‹์€ GPU ๊ฐ„ ํ†ต์‹ ์„ ๋” ๋น ๋ฅด๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์œผ๋ฉฐ(NVLink์™€ ๊ฐ™์ด), ์–ด๋–ค ์—ฐ๊ฒฐ ๋ฐฉ์‹์€ ๋” ๋Š๋ฆฌ๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค(PHB์™€ ๊ฐ™์ด).

์‚ฌ์šฉํ•˜๋Š” ํ™•์žฅ์„ฑ ์†”๋ฃจ์…˜์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์—ฐ๊ฒฐ ์†๋„๊ฐ€ ์ฃผ์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜๋„ ์žˆ๊ณ  ๋ฏธ๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. DDP์™€ ๊ฐ™์ด GPU๊ฐ€ ๊ฑฐ์˜ ๋™๊ธฐํ™”ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋Š” ๊ฒฝ์šฐ, ์—ฐ๊ฒฐ ์†๋„๊ฐ€ ๋Š๋ ค๋„ ํฐ ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด ZeRO-DP์™€ ๊ฐ™์ด GPU๊ฐ„ ํ†ต์‹ ์ด ๋งŽ์ด ํ•„์š”ํ•œ ๊ฒฝ์šฐ, ๋” ๋น ๋ฅธ ํ›ˆ๋ จ์„ ์œ„ํ•ด์„œ๋Š” ๋” ๋น ๋ฅธ ์—ฐ๊ฒฐ ์†๋„๊ฐ€ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

#### NVLink [[nvlink]]

[NVLink](https://en.wikipedia.org/wiki/NVLink)๋Š” Nvidia์—์„œ ๊ฐœ๋ฐœํ•œ ์œ ์„  ๊ธฐ๋ฐ˜์˜ ์ง๋ ฌ ๋‹ค์ค‘ ๋ ˆ์ธ ๊ทผ๊ฑฐ๋ฆฌ ํ†ต์‹  ๋งํฌ์ž…๋‹ˆ๋‹ค.

์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ NVLink๋Š” ๋” ๋น ๋ฅธ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. [Nvidia Ampere GA102 GPU Architecture](https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf)์—์„œ ์•„๋ž˜์™€ ๊ฐ™์€ ์ •๋ณด๋ฅผ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

> 3์„ธ๋Œ€ NVLinkยฎ
> GA102 GPU๋Š” 4๊ฐœ์˜ x4 ๋งํฌ๋ฅผ ํฌํ•จํ•˜๋Š” NVIDIA์˜ 3์„ธ๋Œ€ NVLink ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ™œ์šฉํ•˜๋ฉฐ,
> ๊ฐ ๋งํฌ๋Š” ๋‘ ๊ฐœ์˜ GPU ๊ฐ„์— ๊ฐ ๋ฐฉํ–ฅ์œผ๋กœ ์ดˆ๋‹น 14.0625GB์˜ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
> 4๊ฐœ์˜ ๋งํฌ๋Š” ๊ฐ ๋ฐฉํ–ฅ์— ์ดˆ๋‹น 56.25GB์˜ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•˜๋ฉฐ, ๋‘ ๊ฐœ์˜ GPU ๊ฐ„์—๋Š” ์ดˆ๋‹น 112.5GB์˜ ์ด ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
> ๋‘ ๊ฐœ์˜ RTX 3090 GPU๋ฅผ NVLink๋ฅผ ์‚ฌ์šฉํ•ด SLI๋กœ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
> (3-Way ๋ฐ 4-Way SLI ๊ตฌ์„ฑ์€ ์ง€์›๋˜์ง€ ์•Š์Œ์— ์œ ์˜ํ•˜์„ธ์š”.)


๋”ฐ๋ผ์„œ `nvidia-smi topo -m`์˜ ๊ฒฐ๊ณผ์—์„œ `NVX`์˜ ๊ฐ’์ด ๋†’์„์ˆ˜๋ก ๋” ์ข‹์Šต๋‹ˆ๋‹ค. ์„ธ๋Œ€๋Š” GPU ์•„ํ‚คํ…์ฒ˜์— ๋”ฐ๋ผ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ทธ๋ ‡๋‹ค๋ฉด, gpt2๋ฅผ ์ž‘์€ wikitext ์ƒ˜ํ”Œ๋กœ ํ•™์Šต์‹œํ‚ค๋Š” ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด, NVLink๊ฐ€ ํ›ˆ๋ จ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:


| NVlink | Time |
| ----- | ---: |
| Y | 101s |
| N | 131s |


NVLink ์‚ฌ์šฉ ์‹œ ํ›ˆ๋ จ์ด ์•ฝ 23% ๋” ๋น ๋ฅด๊ฒŒ ์™„๋ฃŒ๋ฉ๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ฒค์น˜๋งˆํฌ์—์„œ๋Š” `NCCL_P2P_DISABLE=1`์„ ์‚ฌ์šฉํ•˜์—ฌ NVLink๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ์„ค์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ „์ฒด ๋ฒค์น˜๋งˆํฌ ์ฝ”๋“œ์™€ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

```bash
# DDP w/ NVLink

rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \
--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train \
--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200

{'train_runtime': 101.9003, 'train_samples_per_second': 1.963, 'epoch': 0.69}

# DDP w/o NVLink

rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 NCCL_P2P_DISABLE=1 python -m torch.distributed.launch \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \
--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train
--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200

{'train_runtime': 131.4367, 'train_samples_per_second': 1.522, 'epoch': 0.69}
```

ํ•˜๋“œ์›จ์–ด: ๊ฐ๊ฐ 2๊ฐœ์˜ TITAN RTX 24GB + 2๊ฐœ์˜ NVLink (`NV2` in `nvidia-smi topo -m`)
์†Œํ”„ํŠธ์›จ์–ด: `pytorch-1.8-to-be` + `cuda-11.0` / `transformers==4.3.0.dev0`