-
Notifications
You must be signed in to change notification settings - Fork 31.2k
π [i18n-KO] Translated add_new_pipeline.md to Korean
#25498
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. Weβll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
stevhliu
merged 15 commits into
huggingface:main
from
heuristicwave:ko-add_new_pipeline
Aug 29, 2023
Merged
Changes from all commits
Commits
Show all changes
15 commits
Select commit
Hold shift + click to select a range
46cd6c4
dos: ko: add_new_pipeline.mdx
heuristicwave 1d62acf
feat: chatgpt draft
heuristicwave c5ba09d
fix: manual edits
heuristicwave 88c956c
docs: ko: add_new_pipeline
heuristicwave 8a93a86
Update docs/source/ko/add_new_pipeline.md
heuristicwave 6efd79a
Update docs/source/ko/add_new_pipeline.md
heuristicwave 8993ab8
Update docs/source/ko/add_new_pipeline.md
heuristicwave 45e89a6
Update docs/source/ko/add_new_pipeline.md
heuristicwave adfbbda
Update docs/source/ko/add_new_pipeline.md
heuristicwave 62aa854
Update docs/source/ko/add_new_pipeline.md
heuristicwave 7cfdce0
Update docs/source/ko/add_new_pipeline.md
heuristicwave 4024bb0
Update docs/source/ko/add_new_pipeline.md
heuristicwave 97a89e7
Update docs/source/ko/add_new_pipeline.md
heuristicwave c2c96c4
Update docs/source/ko/add_new_pipeline.md
heuristicwave 3339890
Update docs/source/ko/add_new_pipeline.md
heuristicwave File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,248 @@ | ||
| <!--Copyright 2020 The HuggingFace Team. All rights reserved. | ||
| Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | ||
| the License. You may obtain a copy of the License at | ||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
| Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | ||
| an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
| β οΈ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be | ||
| rendered properly in your Markdown viewer. | ||
| --> | ||
|
|
||
| # μ΄λ»κ² μ¬μ©μ μ μ νμ΄νλΌμΈμ μμ±νλμ? [[how-to-create-a-custom-pipeline]] | ||
|
|
||
| μ΄ κ°μ΄λμμλ μ¬μ©μ μ μ νμ΄νλΌμΈμ μ΄λ»κ² μμ±νκ³ [νλΈ](hf.co/models)μ 곡μ νκ±°λ π€ Transformers λΌμ΄λΈλ¬λ¦¬μ μΆκ°νλ λ°©λ²μ μ΄ν΄λ³΄κ² μ΅λλ€. | ||
|
|
||
| λ¨Όμ νμ΄νλΌμΈμ΄ μμ©ν μ μλ μμ μ λ ₯μ κ²°μ ν΄μΌ ν©λλ€. | ||
| λ¬Έμμ΄, μμ λ°μ΄νΈ, λμ λ리 λλ κ°μ₯ μνλ μ λ ₯μΌ κ°λ₯μ±μ΄ λμ κ²μ΄λ©΄ 무μμ΄λ κ°λ₯ν©λλ€. | ||
| μ΄ μ λ ₯μ κ°λ₯ν ν μμν Python νμμΌλ‘ μ μ§ν΄μΌ (JSONμ ν΅ν΄ λ€λ₯Έ μΈμ΄μλ) νΈνμ±μ΄ μ’μμ§λλ€. | ||
| μ΄κ²μ΄ μ μ²λ¦¬(`preprocess`) νμ΄νλΌμΈμ μ λ ₯(`inputs`)μ΄ λ κ²μ λλ€. | ||
|
|
||
| κ·Έλ° λ€μ `outputs`λ₯Ό μ μνμΈμ. | ||
| `inputs`μ κ°μ μ μ± μ λ°λ₯΄κ³ , κ°λ¨ν μλ‘ μ’μ΅λλ€. | ||
| μ΄κ²μ΄ νμ²λ¦¬(`postprocess`) λ©μλμ μΆλ ₯μ΄ λ κ²μ λλ€. | ||
|
|
||
| λ¨Όμ 4κ°μ λ©μλ(`preprocess`, `_forward`, `postprocess` λ° `_sanitize_parameters`)λ₯Ό ꡬννκΈ° μν΄ κΈ°λ³Έ ν΄λμ€ `Pipeline`μ μμνμ¬ μμν©λλ€. | ||
|
|
||
|
|
||
| ```python | ||
| from transformers import Pipeline | ||
|
|
||
|
|
||
| class MyPipeline(Pipeline): | ||
| def _sanitize_parameters(self, **kwargs): | ||
| preprocess_kwargs = {} | ||
| if "maybe_arg" in kwargs: | ||
| preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] | ||
| return preprocess_kwargs, {}, {} | ||
|
|
||
| def preprocess(self, inputs, maybe_arg=2): | ||
| model_input = Tensor(inputs["input_ids"]) | ||
| return {"model_input": model_input} | ||
|
|
||
| def _forward(self, model_inputs): | ||
| # model_inputs == {"model_input": model_input} | ||
| outputs = self.model(**model_inputs) | ||
| # Maybe {"logits": Tensor(...)} | ||
| return outputs | ||
|
|
||
| def postprocess(self, model_outputs): | ||
| best_class = model_outputs["logits"].softmax(-1) | ||
| return best_class | ||
| ``` | ||
|
|
||
| μ΄ λΆν ꡬ쑰λ CPU/GPUμ λν λΉκ΅μ μνν μ§μμ μ 곡νλ λμμ, λ€λ₯Έ μ€λ λμμ CPUμ λν μ¬μ /μ¬ν μ²λ¦¬λ₯Ό μνν μ μκ² μ§μνλ κ²μ λλ€. | ||
|
|
||
| `preprocess`λ μλ μ μλ μ λ ₯μ κ°μ Έμ λͺ¨λΈμ 곡κΈν μ μλ νμμΌλ‘ λ³νν©λλ€. | ||
| λ λ§μ μ 보λ₯Ό ν¬ν¨ν μ μμΌλ©° μΌλ°μ μΌλ‘ `Dict` ννμ λλ€. | ||
|
|
||
| `_forward`λ ꡬν μΈλΆ μ¬νμ΄λ©° μ§μ νΈμΆν μ μμ΅λλ€. | ||
| `forward`λ μμ μ₯μΉμμ λͺ¨λ κ²μ΄ μλνλμ§ νμΈνκΈ° μν μμ μ₯μΉκ° ν¬ν¨λμ΄ μμ΄ μ νΈλλ νΈμΆ λ©μλμ λλ€. | ||
| μ€μ λͺ¨λΈκ³Ό κ΄λ ¨λ κ²μ `_forward` λ©μλμ μνλ©°, λλ¨Έμ§λ μ μ²λ¦¬/νμ²λ¦¬ κ³Όμ μ μμ΅λλ€. | ||
|
|
||
| `postprocess` λ©μλλ `_forward`μ μΆλ ₯μ κ°μ Έμ μ΄μ μ κ²°μ ν μ΅μ’ μΆλ ₯ νμμΌλ‘ λ³νν©λλ€. | ||
|
|
||
| `_sanitize_parameters`λ μ΄κΈ°ν μκ°μ `pipeline(...., maybe_arg=4)`μ΄λ νΈμΆ μκ°μ `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`κ³Ό κ°μ΄, μ¬μ©μκ° μνλ κ²½μ° μΈμ λ μ§ λ§€κ°λ³μλ₯Ό μ λ¬ν μ μλλ‘ νμ©ν©λλ€. | ||
|
|
||
| `_sanitize_parameters`μ λ°ν κ°μ `preprocess`, `_forward`, `postprocess`μ μ§μ μ λ¬λλ 3κ°μ kwargs λμ λ리μ λλ€. | ||
| νΈμΆμκ° μΆκ° λ§€κ°λ³μλ‘ νΈμΆνμ§ μμλ€λ©΄ μ무κ²λ μ±μ°μ§ λ§μμμ€. | ||
| μ΄λ κ² νλ©΄ νμ λ "μμ°μ€λ¬μ΄" ν¨μ μ μμ κΈ°λ³Έ μΈμλ₯Ό μ μ§ν μ μμ΅λλ€. | ||
|
|
||
| λΆλ₯ μμ μμ `top_k` λ§€κ°λ³μκ° λνμ μΈ μμ λλ€. | ||
|
|
||
| ```python | ||
| >>> pipe = pipeline("my-new-task") | ||
| >>> pipe("This is a test") | ||
| [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05} | ||
| {"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}] | ||
|
|
||
| >>> pipe("This is a test", top_k=2) | ||
| [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}] | ||
| ``` | ||
|
|
||
| μ΄λ₯Ό λ¬μ±νκΈ° μν΄ μ°λ¦¬λ `postprocess` λ©μλλ₯Ό κΈ°λ³Έ λ§€κ°λ³μμΈ `5`λ‘ μ λ°μ΄νΈνκ³ `_sanitize_parameters`λ₯Ό μμ νμ¬ μ΄ μ λ§€κ°λ³μλ₯Ό νμ©ν©λλ€. | ||
|
|
||
|
|
||
| ```python | ||
| def postprocess(self, model_outputs, top_k=5): | ||
| best_class = model_outputs["logits"].softmax(-1) | ||
| # top_kλ₯Ό μ²λ¦¬νλ λ‘μ§ μΆκ° | ||
| return best_class | ||
|
|
||
|
|
||
| def _sanitize_parameters(self, **kwargs): | ||
| preprocess_kwargs = {} | ||
| if "maybe_arg" in kwargs: | ||
| preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] | ||
|
|
||
| postprocess_kwargs = {} | ||
| if "top_k" in kwargs: | ||
| postprocess_kwargs["top_k"] = kwargs["top_k"] | ||
| return preprocess_kwargs, {}, postprocess_kwargs | ||
| ``` | ||
|
|
||
| μ /μΆλ ₯μ κ°λ₯ν ν κ°λ¨νκ³ μμ ν JSON μ§λ ¬ν κ°λ₯ν νμμΌλ‘ μ μ§νλ €κ³ λ Έλ ₯νμμμ€. | ||
| μ΄λ κ² νλ©΄ μ¬μ©μκ° μλ‘μ΄ μ’ λ₯μ κ°μ²΄λ₯Ό μ΄ν΄νμ§ μκ³ λ νμ΄νλΌμΈμ μ½κ² μ¬μ©ν μ μμ΅λλ€. | ||
| λν μ¬μ© μ©μ΄μ±μ μν΄ μ¬λ¬ κ°μ§ μ νμ μΈμ(μ€λμ€ νμΌμ νμΌ μ΄λ¦, URL λλ μμν λ°μ΄νΈμΌ μ μμ)λ₯Ό μ§μνλ κ²μ΄ λΉκ΅μ μΌλ°μ μ λλ€. | ||
|
|
||
|
|
||
|
|
||
| ## μ§μλλ μμ λͺ©λ‘μ μΆκ°νκΈ° [[adding-it-to-the-list-of-supported-tasks]] | ||
|
|
||
| `new-task`λ₯Ό μ§μλλ μμ λͺ©λ‘μ λ±λ‘νλ €λ©΄ `PIPELINE_REGISTRY`μ μΆκ°ν΄μΌ ν©λλ€: | ||
|
|
||
| ```python | ||
| from transformers.pipelines import PIPELINE_REGISTRY | ||
|
|
||
| PIPELINE_REGISTRY.register_pipeline( | ||
| "new-task", | ||
| pipeline_class=MyPipeline, | ||
| pt_model=AutoModelForSequenceClassification, | ||
| ) | ||
| ``` | ||
|
|
||
| μνλ κ²½μ° κΈ°λ³Έ λͺ¨λΈμ μ§μ ν μ μμΌλ©°, μ΄ κ²½μ° νΉμ κ°μ (λΆκΈ° μ΄λ¦ λλ μ»€λ° ν΄μμΌ μ μμ, μ¬κΈ°μλ "abcdef")κ³Ό νμ μ ν¨κ» κ°μ ΈμμΌ ν©λλ€: | ||
|
|
||
| ```python | ||
| PIPELINE_REGISTRY.register_pipeline( | ||
| "new-task", | ||
| pipeline_class=MyPipeline, | ||
| pt_model=AutoModelForSequenceClassification, | ||
| default={"pt": ("user/awesome_model", "abcdef")}, | ||
| type="text", # νμ¬ μ§μ μ ν: text, audio, image, multimodal | ||
| ) | ||
| ``` | ||
|
|
||
| ## Hubμ νμ΄νλΌμΈ 곡μ νκΈ° [[share-your-pipeline-on-the-hub]] | ||
|
|
||
| Hubμ μ¬μ©μ μ μ νμ΄νλΌμΈμ 곡μ νλ €λ©΄ `Pipeline` νμ ν΄λμ€μ μ¬μ©μ μ μ μ½λλ₯Ό Python νμΌμ μ μ₯νκΈ°λ§ νλ©΄ λ©λλ€. | ||
| μλ₯Ό λ€μ΄, λ€μκ³Ό κ°μ΄ λ¬Έμ₯ μ λΆλ₯λ₯Ό μν μ¬μ©μ μ μ νμ΄νλΌμΈμ μ¬μ©νλ€κ³ κ°μ ν΄ λ³΄κ² μ΅λλ€: | ||
|
|
||
| ```py | ||
| import numpy as np | ||
|
|
||
| from transformers import Pipeline | ||
|
|
||
|
|
||
| def softmax(outputs): | ||
| maxes = np.max(outputs, axis=-1, keepdims=True) | ||
| shifted_exp = np.exp(outputs - maxes) | ||
| return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) | ||
|
|
||
|
|
||
| class PairClassificationPipeline(Pipeline): | ||
| def _sanitize_parameters(self, **kwargs): | ||
| preprocess_kwargs = {} | ||
| if "second_text" in kwargs: | ||
| preprocess_kwargs["second_text"] = kwargs["second_text"] | ||
| return preprocess_kwargs, {}, {} | ||
|
|
||
| def preprocess(self, text, second_text=None): | ||
| return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework) | ||
|
|
||
| def _forward(self, model_inputs): | ||
| return self.model(**model_inputs) | ||
|
|
||
| def postprocess(self, model_outputs): | ||
| logits = model_outputs.logits[0].numpy() | ||
| probabilities = softmax(logits) | ||
|
|
||
| best_class = np.argmax(probabilities) | ||
| label = self.model.config.id2label[best_class] | ||
| score = probabilities[best_class].item() | ||
| logits = logits.tolist() | ||
| return {"label": label, "score": score, "logits": logits} | ||
| ``` | ||
|
|
||
| ꡬνμ νλ μμν¬μ ꡬμ λ°μ§ μμΌλ©°, PyTorchμ TensorFlow λͺ¨λΈμ λν΄ μλν©λλ€. | ||
| μ΄λ₯Ό `pair_classification.py`λΌλ νμΌμ μ μ₯ν κ²½μ°, λ€μκ³Ό κ°μ΄ κ°μ Έμ€κ³ λ±λ‘ν μ μμ΅λλ€: | ||
|
|
||
| ```py | ||
| from pair_classification import PairClassificationPipeline | ||
| from transformers.pipelines import PIPELINE_REGISTRY | ||
| from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification | ||
|
|
||
| PIPELINE_REGISTRY.register_pipeline( | ||
| "pair-classification", | ||
| pipeline_class=PairClassificationPipeline, | ||
| pt_model=AutoModelForSequenceClassification, | ||
| tf_model=TFAutoModelForSequenceClassification, | ||
| ) | ||
| ``` | ||
|
|
||
| μ΄ μμ μ΄ μλ£λλ©΄ μ¬μ νλ ¨λ λͺ¨λΈκ³Ό ν¨κ» μ¬μ©ν μ μμ΅λλ€. | ||
| μλ₯Ό λ€μ΄, `sgugger/finetuned-bert-mrpc`μ MRPC λ°μ΄ν° μΈνΈμμ λ―ΈμΈ μ‘°μ λμ΄ λ¬Έμ₯ μμ ν¨λ¬νλ μ΄μ¦μΈμ§ μλμ§λ₯Ό λΆλ₯ν©λλ€. | ||
|
|
||
| ```py | ||
| from transformers import pipeline | ||
|
|
||
| classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc") | ||
| ``` | ||
|
|
||
| κ·Έλ° λ€μ `Repository`μ `save_pretrained` λ©μλλ₯Ό μ¬μ©νμ¬ νλΈμ 곡μ ν μ μμ΅λλ€: | ||
|
|
||
| ```py | ||
| from huggingface_hub import Repository | ||
|
|
||
| repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline") | ||
| classifier.save_pretrained("test-dynamic-pipeline") | ||
| repo.push_to_hub() | ||
| ``` | ||
|
|
||
| μ΄λ κ² νλ©΄ "test-dynamic-pipeline" ν΄λ λ΄μ `PairClassificationPipeline`μ μ μν νμΌμ΄ 볡μ¬λλ©°, νμ΄νλΌμΈμ λͺ¨λΈκ³Ό ν ν¬λμ΄μ λ μ μ₯ν ν, `{your_username}/test-dynamic-pipeline` μ μ₯μμ μλ λͺ¨λ κ²μ νΈμν©λλ€. | ||
| μ΄νμλ `trust_remote_code=True` μ΅μ λ§ μ 곡νλ©΄ λꡬλ μ¬μ©ν μ μμ΅λλ€. | ||
|
|
||
| ```py | ||
| from transformers import pipeline | ||
|
|
||
| classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True) | ||
| ``` | ||
|
|
||
| ## π€ Transformersμ νμ΄νλΌμΈ μΆκ°νκΈ° [[add-the-pipeline-to-transformers]] | ||
|
|
||
| π€ Transformersμ μ¬μ©μ μ μ νμ΄νλΌμΈμ κΈ°μ¬νλ €λ©΄, `pipelines` νμ λͺ¨λμ μ¬μ©μ μ μ νμ΄νλΌμΈ μ½λμ ν¨κ» μ λͺ¨λμ μΆκ°ν λ€μ, `pipelines/__init__.py`μμ μ μλ μμ λͺ©λ‘μ μΆκ°ν΄μΌ ν©λλ€. | ||
|
|
||
| κ·Έλ° λ€μ ν μ€νΈλ₯Ό μΆκ°ν΄μΌ ν©λλ€. | ||
| `tests/test_pipelines_MY_PIPELINE.py`λΌλ μ νμΌμ λ§λ€κ³ λ€λ₯Έ ν μ€νΈμ μμ λ₯Ό ν¨κ» μμ±ν©λλ€. | ||
|
|
||
| `run_pipeline_test` ν¨μλ λ§€μ° μΌλ°μ μ΄λ©°, `model_mapping` λ° `tf_model_mapping`μμ μ μλ κ°λ₯ν λͺ¨λ μν€ν μ²μ μμ 무μμ λͺ¨λΈμμ μ€νλ©λλ€. | ||
|
|
||
| μ΄λ ν₯ν νΈνμ±μ ν μ€νΈνλ λ° λ§€μ° μ€μνλ©°, λκ΅°κ° `XXXForQuestionAnswering`μ μν μ λͺ¨λΈμ μΆκ°νλ©΄ νμ΄νλΌμΈ ν μ€νΈκ° ν΄λΉ λͺ¨λΈμμ μ€νμ μλνλ€λ μλ―Έμ λλ€. | ||
| λͺ¨λΈμ΄ 무μμμ΄κΈ° λλ¬Έμ μ€μ κ°μ νμΈνλ κ²μ λΆκ°λ₯νλ―λ‘, λ¨μν νμ΄νλΌμΈ μΆλ ₯ `TYPE`κ³Ό μΌμΉμν€κΈ° μν λμ°λ―Έ `ANY`κ° μμ΅λλ€. | ||
|
|
||
| λν 2κ°(μ΄μμ μΌλ‘λ 4κ°)μ ν μ€νΈλ₯Ό ꡬνν΄μΌ ν©λλ€. | ||
|
|
||
| - `test_small_model_pt`: μ΄ νμ΄νλΌμΈμ λν μμ λͺ¨λΈ 1κ°λ₯Ό μ μ(κ²°κ³Όκ° μλ―Έ μμ΄λ μκ΄μμ)νκ³ νμ΄νλΌμΈ μΆλ ₯μ ν μ€νΈν©λλ€. | ||
| κ²°κ³Όλ `test_small_model_tf`μ λμΌν΄μΌ ν©λλ€. | ||
| - `test_small_model_tf`: μ΄ νμ΄νλΌμΈμ λν μμ λͺ¨λΈ 1κ°λ₯Ό μ μ(κ²°κ³Όκ° μλ―Έ μμ΄λ μκ΄μμ)νκ³ νμ΄νλΌμΈ μΆλ ₯μ ν μ€νΈν©λλ€. | ||
| κ²°κ³Όλ `test_small_model_pt`μ λμΌν΄μΌ ν©λλ€. | ||
| - `test_large_model_pt`(`μ νμ¬ν`): κ²°κ³Όκ° μλ―Έ μμ κ²μΌλ‘ μμλλ μ€μ νμ΄νλΌμΈμμ νμ΄νλΌμΈμ ν μ€νΈν©λλ€. | ||
| μ΄λ¬ν ν μ€νΈλ μλκ° λ리λ―λ‘ μ΄λ₯Ό νμν΄μΌ ν©λλ€. | ||
| μ¬κΈ°μμ λͺ©νλ νμ΄νλΌμΈμ 보μ¬μ£Όκ³ ν₯ν 릴리μ¦μμμ λ³νκ° μλμ§ νμΈνλ κ²μ λλ€. | ||
| - `test_large_model_tf`(`μ νμ¬ν`): κ²°κ³Όκ° μλ―Έ μμ κ²μΌλ‘ μμλλ μ€μ νμ΄νλΌμΈμμ νμ΄νλΌμΈμ ν μ€νΈν©λλ€. | ||
| μ΄λ¬ν ν μ€νΈλ μλκ° λ리λ―λ‘ μ΄λ₯Ό νμν΄μΌ ν©λλ€. | ||
| μ¬κΈ°μμ λͺ©νλ νμ΄νλΌμΈμ 보μ¬μ£Όκ³ ν₯ν 릴리μ¦μμμ λ³νκ° μλμ§ νμΈνλ κ²μ λλ€. |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.