Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

make torch.load a bit safer #27282

Merged
merged 2 commits into from
Dec 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/transformers/convert_pytorch_checkpoint_to_tf2.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,7 +329,7 @@ def convert_pt_checkpoint_to_tf(
if compare_with_pt_model:
tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network

state_dict = torch.load(pytorch_checkpoint_path, map_location="cpu")
state_dict = torch.load(pytorch_checkpoint_path, map_location="cpu", weights_only=True)
pt_model = pt_model_class.from_pretrained(
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/modeling_flax_pytorch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def load_pytorch_checkpoint_in_flax_state_dict(
for k in f.keys():
pt_state_dict[k] = f.get_tensor(k)
else:
pt_state_dict = torch.load(pt_path, map_location="cpu")
pt_state_dict = torch.load(pt_path, map_location="cpu", weights_only=True)
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.")

flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model)
Expand Down Expand Up @@ -249,7 +249,7 @@ def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model):
flax_state_dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
pt_state_dict = torch.load(shard_file)
pt_state_dict = torch.load(shard_file, weights_only=True)
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}

model_prefix = flax_model.base_model_prefix
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/modeling_tf_pytorch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@ def load_pytorch_checkpoint_in_tf2_model(
if pt_path.endswith(".safetensors"):
state_dict = safe_load_file(pt_path)
else:
state_dict = torch.load(pt_path, map_location="cpu")
state_dict = torch.load(pt_path, map_location="cpu", weights_only=True)

pt_state_dict.update(state_dict)

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -480,7 +480,7 @@ def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
error_message += f"\nMissing key(s): {str_unexpected_keys}."
raise RuntimeError(error_message)

loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu")
loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", weights_only=True)

for shard_file in shard_files:
state_dict = loader(os.path.join(folder, shard_file))
Expand Down Expand Up @@ -516,7 +516,7 @@ def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
else:
map_location = "cpu"

return torch.load(checkpoint_file, map_location=map_location)
return torch.load(checkpoint_file, map_location=map_location, weights_only=True)
except Exception as e:
try:
with open(checkpoint_file) as f:
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/wav2vec2/modeling_wav2vec2.py
Original file line number Diff line number Diff line change
Expand Up @@ -1333,7 +1333,7 @@ def load_adapter(self, target_lang: str, force_load=True, **kwargs):
cache_dir=cache_dir,
)

state_dict = torch.load(weight_path, map_location="cpu")
state_dict = torch.load(weight_path, map_location="cpu", weights_only=True)

except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
Expand Down
8 changes: 4 additions & 4 deletions src/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -2086,7 +2086,7 @@ def _load_from_checkpoint(self, resume_from_checkpoint, model=None):
logger.warning(
"Enabling FP16 and loading from smp < 1.10 checkpoint together is not suppported."
)
state_dict = torch.load(weights_file, map_location="cpu")
state_dict = torch.load(weights_file, map_location="cpu", weights_only=True)
# Required for smp to not auto-translate state_dict from hf to smp (is already smp).
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
Expand All @@ -2099,7 +2099,7 @@ def _load_from_checkpoint(self, resume_from_checkpoint, model=None):
if self.args.save_safetensors and os.path.isfile(safe_weights_file):
state_dict = safetensors.torch.load_file(safe_weights_file, device="cpu")
else:
state_dict = torch.load(weights_file, map_location="cpu")
state_dict = torch.load(weights_file, map_location="cpu", weights_only=True)

# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
Expand Down Expand Up @@ -2167,7 +2167,7 @@ def _load_best_model(self):
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
state_dict = torch.load(best_model_path, map_location="cpu", weights_only=True)

state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
Expand Down Expand Up @@ -2196,7 +2196,7 @@ def _load_best_model(self):
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
state_dict = torch.load(best_model_path, map_location="cpu", weights_only=True)

# If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
Expand Down
Loading