Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Fixed raising TypeError instead of ValueError for invalid type #32111

Merged
merged 6 commits into from
Jul 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ class GroupedBatchSampler(BatchSampler):

def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
raise TypeError(
"sampler should be an instance of torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
Expand Down
4 changes: 2 additions & 2 deletions examples/research_projects/tapex/wikisql_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def convert_to_float(value):
if isinstance(value, int):
return float(value)
if not isinstance(value, str):
raise ValueError("Argument value is not a string. Can't parse it as float")
raise TypeError("Argument value is not a string. Can't parse it as float")
sanitized = value

try:
Expand Down Expand Up @@ -158,7 +158,7 @@ def _respect_conditions(table, row, conditions):
cmp_value = _normalize_for_match(cmp_value)

if not isinstance(table_value, type(cmp_value)):
raise ValueError("Type difference {} != {}".format(type(table_value), type(cmp_value)))
raise TypeError("Type difference {} != {}".format(type(table_value), type(cmp_value)))

if not _compare(cond.operator, table_value, cmp_value):
return False
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/agents/agent_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ def __init__(self, value):
elif isinstance(value, np.ndarray):
self._tensor = torch.tensor(value)
else:
raise ValueError(f"Unsupported type for {self.__class__.__name__}: {type(value)}")
raise TypeError(f"Unsupported type for {self.__class__.__name__}: {type(value)}")

def _ipython_display_(self, include=None, exclude=None):
"""
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/configuration_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1004,7 +1004,7 @@ def update_from_string(self, update_str: str):
elif isinstance(old_v, float):
v = float(v)
elif not isinstance(old_v, str):
raise ValueError(
raise TypeError(
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
)

Expand Down
12 changes: 6 additions & 6 deletions src/transformers/data/processors/xnli.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,11 @@ def get_train_examples(self, data_dir):
text_b = line[1]
label = "contradiction" if line[2] == "contradictory" else line[2]
if not isinstance(text_a, str):
raise ValueError(f"Training input {text_a} is not a string")
raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise ValueError(f"Training input {text_b} is not a string")
raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise ValueError(f"Training label {label} is not a string")
raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples

Expand All @@ -70,11 +70,11 @@ def get_test_examples(self, data_dir):
text_b = line[7]
label = line[1]
if not isinstance(text_a, str):
raise ValueError(f"Training input {text_a} is not a string")
raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise ValueError(f"Training input {text_b} is not a string")
raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise ValueError(f"Training label {label} is not a string")
raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples

Expand Down
10 changes: 5 additions & 5 deletions src/transformers/generation/beam_constraints.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ def advance(self):

def does_advance(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
raise TypeError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")

if self.completed:
return False
Expand All @@ -165,7 +165,7 @@ def does_advance(self, token_id: int):

def update(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
raise TypeError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")

stepped = False
completed = False
Expand Down Expand Up @@ -300,15 +300,15 @@ def advance(self):

def does_advance(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
raise TypeError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")

next_tokens = self.trie.next_tokens(self.current_seq)

return token_id in next_tokens

def update(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
raise TypeError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")

stepped = False
completed = False
Expand Down Expand Up @@ -432,7 +432,7 @@ def reset(self, token_ids: Optional[List[int]]):

def add(self, token_id: int):
if not isinstance(token_id, int):
raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`.")
raise TypeError(f"`token_id` should be an `int`, but is `{token_id}`.")

complete, stepped = False, False

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/generation/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -4281,7 +4281,7 @@ def _split(data, full_batch_size: int, split_size: int = None):
for i in range(0, full_batch_size, split_size)
]
else:
raise ValueError(f"Unexpected attribute type: {type(data)}")
raise TypeError(f"Unexpected attribute type: {type(data)}")


def _split_model_inputs(
Expand Down Expand Up @@ -4388,7 +4388,7 @@ def _concat(data):
# If the elements are integers or floats, return a tensor
return torch.tensor(data)
else:
raise ValueError(f"Unexpected attribute type: {type(data[0])}")
raise TypeError(f"Unexpected attribute type: {type(data[0])}")

# Use a dictionary comprehension to gather attributes from all objects and concatenate them
concatenated_data = {
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/image_processing_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -544,7 +544,7 @@ def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
response.raise_for_status()
return Image.open(BytesIO(response.content))
else:
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
raise TypeError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")


ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/image_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def to_channel_dimension_format(
`np.ndarray`: The image with the channel dimension set to `channel_dim`.
"""
if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")

if input_channel_dim is None:
input_channel_dim = infer_channel_dimension_format(image)
Expand Down Expand Up @@ -121,7 +121,7 @@ def rescale(
`np.ndarray`: The rescaled image.
"""
if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")

rescaled_image = image * scale
if data_format is not None:
Expand Down Expand Up @@ -453,7 +453,7 @@ def center_crop(
return_numpy = True if return_numpy is None else return_numpy

if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")

if not isinstance(size, Iterable) or len(size) != 2:
raise ValueError("size must have 2 elements representing the height and width of the output image")
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/image_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,7 +377,7 @@ def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] =
elif isinstance(image, PIL.Image.Image):
image = image
else:
raise ValueError(
raise TypeError(
"Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image."
)
image = PIL.ImageOps.exif_transpose(image)
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/integrations/awq.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ def get_modules_to_fuse(model, quantization_config):
The quantization configuration to use.
"""
if not isinstance(model, PreTrainedModel):
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
raise TypeError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")

# Always default to `quantization_config.modules_to_fuse`
if quantization_config.modules_to_fuse is not None:
Expand Down
4 changes: 1 addition & 3 deletions src/transformers/integrations/peft.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,9 +262,7 @@ def add_adapter(self, adapter_config, adapter_name: Optional[str] = None) -> Non
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")

if not isinstance(adapter_config, PeftConfig):
raise ValueError(
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
)
raise TypeError(f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead.")

# Retrieve the name or path of the model, one could also use self.config._name_or_path
# but to be consistent with what we do in PEFT: https://github.com/huggingface/peft/blob/6e783780ca9df3a623992cc4d1d665001232eae0/src/peft/mapping.py#L100
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/modeling_tf_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1209,7 +1209,7 @@ def build(self, input_shape=None):
def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig):
raise ValueError(
raise TypeError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/align/modeling_align.py
Original file line number Diff line number Diff line change
Expand Up @@ -1418,13 +1418,13 @@ def __init__(self, config: AlignConfig):
super().__init__(config)

if not isinstance(config.text_config, AlignTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type AlignTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, AlignVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type AlignVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/altclip/modeling_altclip.py
Original file line number Diff line number Diff line change
Expand Up @@ -1466,12 +1466,12 @@ def __init__(self, config: AltCLIPConfig):
super().__init__(config)

if not isinstance(config.vision_config, AltCLIPVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type AltCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
if not isinstance(config.text_config, AltCLIPTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type AltCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/bark/processing_bark.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,7 @@ def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None):
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")

if not isinstance(voice_preset[key], np.ndarray):
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")

if len(voice_preset[key].shape) != self.preset_shape[key]:
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/blip/modeling_blip.py
Original file line number Diff line number Diff line change
Expand Up @@ -755,13 +755,13 @@ def __init__(self, config: BlipConfig):
super().__init__(config)

if not isinstance(config.text_config, BlipTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type BlipTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, BlipVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/blip/modeling_tf_blip.py
Original file line number Diff line number Diff line change
Expand Up @@ -794,13 +794,13 @@ def __init__(self, config: BlipConfig, *args, **kwargs):
super().__init__(*args, **kwargs)

if not isinstance(config.text_config, BlipTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type BlipTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, BlipVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/chameleon/processing_chameleon.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ def __call__(
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
raise TypeError("Invalid input text. Please provide a string, or a list of strings")

# Replace the image token with the expanded image token sequence
prompt_strings = []
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/chinese_clip/modeling_chinese_clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -1341,13 +1341,13 @@ def __init__(self, config: ChineseCLIPConfig):
super().__init__(config)

if not isinstance(config.text_config, ChineseCLIPTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/clap/modeling_clap.py
Original file line number Diff line number Diff line change
Expand Up @@ -1928,13 +1928,13 @@ def __init__(self, config: ClapConfig):
super().__init__(config)

if not isinstance(config.text_config, ClapTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type ClapTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.audio_config, ClapAudioConfig):
raise ValueError(
raise TypeError(
"config.audio_config is expected to be of type ClapAudioConfig but is of type"
f" {type(config.audio_config)}."
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/clip/modeling_clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -1119,13 +1119,13 @@ def __init__(self, config: CLIPConfig):
super().__init__(config)

if not isinstance(config.text_config, CLIPTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type CLIPTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, CLIPVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/clip/modeling_tf_clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -825,13 +825,13 @@ def __init__(self, config: CLIPConfig, **kwargs):
super().__init__(**kwargs)

if not isinstance(config.text_config, CLIPTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type CLIPTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, CLIPVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/clipseg/modeling_clipseg.py
Original file line number Diff line number Diff line change
Expand Up @@ -924,13 +924,13 @@ def __init__(self, config: CLIPSegConfig):
super().__init__(config)

if not isinstance(config.text_config, CLIPSegTextConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type CLIPSegTextConfig but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.vision_config, CLIPSegVisionConfig):
raise ValueError(
raise TypeError(
"config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
f" {type(config.vision_config)}."
)
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/clvp/modeling_clvp.py
Original file line number Diff line number Diff line change
Expand Up @@ -1513,19 +1513,19 @@ def __init__(self, config: ClvpConfig):
super().__init__(config)

if not isinstance(config.text_config, ClvpEncoderConfig):
raise ValueError(
raise TypeError(
"config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
f" {type(config.text_config)}."
)

if not isinstance(config.speech_config, ClvpEncoderConfig):
raise ValueError(
raise TypeError(
"config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
f" {type(config.speech_config)}."
)

if not isinstance(config.decoder_config, ClvpDecoderConfig):
raise ValueError(
raise TypeError(
"config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
f" {type(config.decoder_config)}."
)
Expand Down
Loading