Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

🌐 [i18n-KO] Translated openai-gpt.md to Korean #33801

Merged
merged 7 commits into from
Oct 9, 2024

Conversation

yijun-lee
Copy link
Contributor

@yijun-lee yijun-lee commented Sep 30, 2024

What does this PR do?

Translated the openai-gpt.md file of the documentation to Korean.
Thank you in advance for your review.

Part of #20179

Before reviewing

  • Check for missing / redundant translations (번역 누락/중복 검사)
  • Grammar Check (맞춤법 검사)
  • Review or Add new terms to glossary (용어 확인 및 추가)
  • Check Inline TOC (e.g. [[lowercased-header]])
  • Check live-preview for gotchas (live-preview로 정상작동 확인)

Who can review? (Initial)

May you please review this PR?
@jungnerd, @cjfghk5697, @yijun-lee, @mreraser

Before submitting

  • This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
  • Did you read the contributor guideline,
    Pull Request section?
  • Was this discussed/approved via a Github issue or the forum? Please add a link
    to it if that's the case.
  • Did you make sure to update the documentation with your changes? Here are the
    documentation guidelines, and
    here are tips on formatting docstrings.
  • Did you write any new necessary tests?

Who can review? (Final)

@stevhliu May you please review this PR?


논문의 초록은 다음과 같습니다:

*자연어 이해는 텍스트 함의, 질문 응답, 의미 유사성 평가, 문서 분류와 같은 다양한 작업을 포함합니다. 비록 대규모의 레이블이 없는 텍스트 말뭉치가 풍부하기는 하지만, 이러한 특정 작업에 대한 학습을 위한 레이블된 데이터는 부족하여 판별적으로 학습된 모델이 적절하게 성능을 발휘하기 어렵습니다. 우리는 다양한 레이블이 없는 텍스트 말뭉치에 대한 언어 모델의 생성적 사전 학습을 수행하고, 각 특정 과제에 대한 판별적 미세 조정을 수행함으로써 이러한 과제에서 큰 성과를 달성할 수 있음을 보여줍니다. 이전 접근 방식과 달리, 우리는 모델 아키텍처에 최소한의 변화를 요구하면서 효과적인 전이를 달성하기 위해 미세 조정 중에 과제 인식 입력 변환(task-aware input transformation)을 사용합니다. 우리는 자연어 이해를 위한 다양한 벤치마크에서 우리의 접근 방식의 효과를 입증합니다. 우리의 일반적인 과제 불가지론적 모델은 각 과제에 특별히 설계된 아키텍처를 사용하는 판별적으로 학습된 모델보다 뛰어나며, 연구된 12개 과제 중 9개 부문에서 최첨단 성능을 크게 향상시킵니다.*
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
*자연어 이해는 텍스트 함의, 질문 응답, 의미 유사성 평가, 문서 분류와 같은 다양한 작업을 포함합니다. 비록 대규모의 레이블이 없는 텍스트 말뭉치가 풍부하기는 하지만, 이러한 특정 작업에 대한 학습을 위한 레이블된 데이터는 부족하여 판별적으로 학습된 모델이 적절하게 성능을 발휘하기 어렵습니다. 우리는 다양한 레이블이 없는 텍스트 말뭉치에 대한 언어 모델의 생성적 사전 학습을 수행하고, 각 특정 과제에 대한 판별적 미세 조정을 수행함으로써 이러한 과제에서 큰 성과를 달성할 수 있음을 보여줍니다. 이전 접근 방식과 달리, 우리는 모델 아키텍처에 최소한의 변화를 요구하면서 효과적인 전이를 달성하기 위해 미세 조정 중에 과제 인식 입력 변환(task-aware input transformation)을 사용합니다. 우리는 자연어 이해를 위한 다양한 벤치마크에서 우리의 접근 방식의 효과를 입증합니다. 우리의 일반적인 과제 불가지론적 모델은 각 과제에 특별히 설계된 아키텍처를 사용하는 판별적으로 학습된 모델보다 뛰어나며, 연구된 12개 과제 중 9개 부문에서 최첨단 성능을 크게 향상시킵니다.*
*자연어 이해는 텍스트 함의, 질문 응답, 의미 유사성 평가, 문서 분류와 같은 다양한 작업을 포함합니다. 비록 대규모의 레이블이 없는 텍스트 말뭉치가 풍부하기는 하지만, 이러한 특정 작업에 대한 학습을 위한 레이블된 데이터는 부족하여 판별적으로 학습된 모델이 적절하게 성능을 발휘하기 어렵습니다. 우리는 다양한 레이블이 없는 텍스트 말뭉치에 대한 언어 모델의 생성적 사전 학습을 수행하고, 각 특정 과제에 대한 판별적 미세 조정을 수행함으로써 이러한 과제에서 큰 성과를 달성할 수 있음을 보여줍니다. 이전 접근 방식과 달리, 우리는 모델 아키텍처에 최소한의 변화를 요구하면서 효과적인 전이를 달성하기 위해 미세 조정 중에 과제 인식 입력 변환(task-aware input transformation)을 사용합니다. 우리는 자연어 이해를 위한 다양한 벤치마크에서 우리의 접근 방식의 효과를 입증합니다. 우리의 일반적인 과제 불가지론적 모델은 각 과제에 특별히 설계된 아키텍처를 사용하는 판별적으로 학습된 모델보다 뛰어나며, 연구된 12개 과제 중 9개 부문에서 최첨단 성능(state of the art)을 크게 향상시킵니다.*

이해에 도움이 되고자 다음과 같이 제안합니다.

@mreraser
Copy link
Contributor

review finished 🚀

yijun-lee and others added 2 commits October 2, 2024 13:12
Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>
@yijun-lee yijun-lee marked this pull request as ready for review October 2, 2024 04:19
@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Member

@stevhliu stevhliu left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One minor nit, otherwise thanks for the translation!

## OpenAIGPTTokenizer [[transformers.OpenAIGPTTokenizer]]

[[autodoc]] OpenAIGPTTokenizer
- save_vocabulary
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should be indented

@yijun-lee
Copy link
Contributor Author

I have resolved it! Thank you :) @stevhliu

@stevhliu stevhliu merged commit c674f2e into huggingface:main Oct 9, 2024
8 checks passed
NielsRogge pushed a commit to NielsRogge/transformers that referenced this pull request Oct 21, 2024
* docs: ko: openai-gpt.md

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* fix: resolve suggestions

* �fix: resolve suggestions

---------

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants