-
Notifications
You must be signed in to change notification settings - Fork 27k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
🌐 [i18n-KO] Translated openai-gpt.md
to Korean
#33801
Conversation
|
||
논문의 초록은 다음과 같습니다: | ||
|
||
*자연어 이해는 텍스트 함의, 질문 응답, 의미 유사성 평가, 문서 분류와 같은 다양한 작업을 포함합니다. 비록 대규모의 레이블이 없는 텍스트 말뭉치가 풍부하기는 하지만, 이러한 특정 작업에 대한 학습을 위한 레이블된 데이터는 부족하여 판별적으로 학습된 모델이 적절하게 성능을 발휘하기 어렵습니다. 우리는 다양한 레이블이 없는 텍스트 말뭉치에 대한 언어 모델의 생성적 사전 학습을 수행하고, 각 특정 과제에 대한 판별적 미세 조정을 수행함으로써 이러한 과제에서 큰 성과를 달성할 수 있음을 보여줍니다. 이전 접근 방식과 달리, 우리는 모델 아키텍처에 최소한의 변화를 요구하면서 효과적인 전이를 달성하기 위해 미세 조정 중에 과제 인식 입력 변환(task-aware input transformation)을 사용합니다. 우리는 자연어 이해를 위한 다양한 벤치마크에서 우리의 접근 방식의 효과를 입증합니다. 우리의 일반적인 과제 불가지론적 모델은 각 과제에 특별히 설계된 아키텍처를 사용하는 판별적으로 학습된 모델보다 뛰어나며, 연구된 12개 과제 중 9개 부문에서 최첨단 성능을 크게 향상시킵니다.* |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
*자연어 이해는 텍스트 함의, 질문 응답, 의미 유사성 평가, 문서 분류와 같은 다양한 작업을 포함합니다. 비록 대규모의 레이블이 없는 텍스트 말뭉치가 풍부하기는 하지만, 이러한 특정 작업에 대한 학습을 위한 레이블된 데이터는 부족하여 판별적으로 학습된 모델이 적절하게 성능을 발휘하기 어렵습니다. 우리는 다양한 레이블이 없는 텍스트 말뭉치에 대한 언어 모델의 생성적 사전 학습을 수행하고, 각 특정 과제에 대한 판별적 미세 조정을 수행함으로써 이러한 과제에서 큰 성과를 달성할 수 있음을 보여줍니다. 이전 접근 방식과 달리, 우리는 모델 아키텍처에 최소한의 변화를 요구하면서 효과적인 전이를 달성하기 위해 미세 조정 중에 과제 인식 입력 변환(task-aware input transformation)을 사용합니다. 우리는 자연어 이해를 위한 다양한 벤치마크에서 우리의 접근 방식의 효과를 입증합니다. 우리의 일반적인 과제 불가지론적 모델은 각 과제에 특별히 설계된 아키텍처를 사용하는 판별적으로 학습된 모델보다 뛰어나며, 연구된 12개 과제 중 9개 부문에서 최첨단 성능을 크게 향상시킵니다.* | |
*자연어 이해는 텍스트 함의, 질문 응답, 의미 유사성 평가, 문서 분류와 같은 다양한 작업을 포함합니다. 비록 대규모의 레이블이 없는 텍스트 말뭉치가 풍부하기는 하지만, 이러한 특정 작업에 대한 학습을 위한 레이블된 데이터는 부족하여 판별적으로 학습된 모델이 적절하게 성능을 발휘하기 어렵습니다. 우리는 다양한 레이블이 없는 텍스트 말뭉치에 대한 언어 모델의 생성적 사전 학습을 수행하고, 각 특정 과제에 대한 판별적 미세 조정을 수행함으로써 이러한 과제에서 큰 성과를 달성할 수 있음을 보여줍니다. 이전 접근 방식과 달리, 우리는 모델 아키텍처에 최소한의 변화를 요구하면서 효과적인 전이를 달성하기 위해 미세 조정 중에 과제 인식 입력 변환(task-aware input transformation)을 사용합니다. 우리는 자연어 이해를 위한 다양한 벤치마크에서 우리의 접근 방식의 효과를 입증합니다. 우리의 일반적인 과제 불가지론적 모델은 각 과제에 특별히 설계된 아키텍처를 사용하는 판별적으로 학습된 모델보다 뛰어나며, 연구된 12개 과제 중 9개 부문에서 최첨단 성능(state of the art)을 크게 향상시킵니다.* |
이해에 도움이 되고자 다음과 같이 제안합니다.
review finished 🚀 |
Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com> Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>
The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
One minor nit, otherwise thanks for the translation!
## OpenAIGPTTokenizer [[transformers.OpenAIGPTTokenizer]] | ||
|
||
[[autodoc]] OpenAIGPTTokenizer | ||
- save_vocabulary |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should be indented
I have resolved it! Thank you :) @stevhliu |
* docs: ko: openai-gpt.md * feat: nmt draft * fix: manual edits * fix: resolve suggestions Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com> Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr> * fix: resolve suggestions * �fix: resolve suggestions --------- Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com> Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>
What does this PR do?
Translated the
openai-gpt.md
file of the documentation to Korean.Thank you in advance for your review.
Part of #20179
Before reviewing
[[lowercased-header]]
)Who can review? (Initial)
May you please review this PR?
@jungnerd, @cjfghk5697, @yijun-lee, @mreraser
Before submitting
Pull Request section?
to it if that's the case.
documentation guidelines, and
here are tips on formatting docstrings.
Who can review? (Final)
@stevhliu May you please review this PR?