Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Olmo is ExecuTorch Compatible #34181

Merged
merged 1 commit into from
Oct 22, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 64 additions & 0 deletions tests/models/olmo/test_modeling_olmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,11 @@

import unittest

from packaging import version
from parameterized import parameterized

from transformers import OlmoConfig, is_torch_available, set_seed
from transformers.generation.configuration_utils import GenerationConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.gpt_neox.tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
from transformers.testing_utils import (
Expand Down Expand Up @@ -449,3 +451,65 @@ def test_simple_encode_decode(self):
self.assertEqual(rust_tokenizer.encode(" "), [50276])

self.assertEqual(rust_tokenizer.encode(" Hello"), [24387])

@slow
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")

from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)

olmo_model = "allenai/OLMo-1B-hf"

tokenizer = AutoTokenizer.from_pretrained(olmo_model, pad_token="</s>", padding_side="right")
EXPECTED_TEXT_COMPLETION = [
"Simply put, the theory of relativity states that \nthe speed of light is the same in all reference frames.\n\nThe speed of light",
]
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
"input_ids"
].shape[-1]

# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
model = OlmoForCausalLM.from_pretrained(
olmo_model,
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_generation_length,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_generation_length,
},
),
)

prompts = ["Simply put, the theory of relativity states that "]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]

# Static Cache + eager
eager_generated_ids = model.generate(
**prompt_tokens, max_new_tokens=max_new_tokens, do_sample=False, cache_implementation=cache_implementation
)
eager_generated_text = tokenizer.batch_decode(eager_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, eager_generated_text)

# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)