Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -310,7 +310,7 @@ def _preprocess(
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)

processed_images = [p[None] if p.ndim == 3 else p for p in processed_images] # add tiles dimension if needed
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)

Expand Down
30 changes: 30 additions & 0 deletions tests/models/perception_lm/test_processing_perception_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,36 @@ def test_image_token_filling(self):
)
image_tokens = (inputs["input_ids"] == image_token_index).sum().item()
self.assertEqual(expected_image_tokens, image_tokens)
self.assertEqual(inputs["pixel_values"].ndim, 5)

def test_vanilla_image_with_no_tiles_token_filling(self):
processor = self.processor_class.from_pretrained(self.tmpdirname)
processor.image_processor.vision_input_type = "vanilla"
# Important to check with non square image
image = torch.randn((1, 3, 450, 500))
# 1 tile
# 448/patch_size/pooling_ratio = 16 => 16*16 tokens per tile
expected_image_tokens = 16 * 16 * 1
image_token_index = processor.image_token_id

messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
inputs = processor(
text=[processor.apply_chat_template(messages)],
images=[image],
return_tensors="pt",
)
image_tokens = (inputs["input_ids"] == image_token_index).sum().item()
self.assertEqual(expected_image_tokens, image_tokens)
self.assertEqual(inputs["pixel_values"].ndim, 5)
self.assertEqual(inputs["pixel_values"].shape[1], 1) # 1 tile


CHAT_TEMPLATE = (
Expand Down