Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions src/transformers/image_processing_utils_fast.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@
auto_docstring,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
is_vision_available,
logging,
)
Expand All @@ -60,14 +59,13 @@
import torch

if is_torchvision_available():
from torchvision.transforms.v2 import functional as F

from .image_utils import pil_torch_interpolation_mapping

else:
pil_torch_interpolation_mapping = None

if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
elif is_torchvision_available():
from torchvision.transforms import functional as F

logger = logging.get_logger(__name__)

Expand Down
5 changes: 1 addition & 4 deletions src/transformers/image_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
is_torch_available,
is_torch_tensor,
is_torchvision_available,
is_torchvision_v2_available,
is_vision_available,
logging,
requires_backends,
Expand All @@ -54,9 +53,7 @@
from torchvision.transforms import InterpolationMode

pil_torch_interpolation_mapping = {
PILImageResampling.NEAREST: InterpolationMode.NEAREST_EXACT
if is_torchvision_v2_available()
else InterpolationMode.NEAREST,
PILImageResampling.NEAREST: InterpolationMode.NEAREST_EXACT,
PILImageResampling.BOX: InterpolationMode.BOX,
PILImageResampling.BILINEAR: InterpolationMode.BILINEAR,
PILImageResampling.HAMMING: InterpolationMode.HAMMING,
Expand Down
8 changes: 1 addition & 7 deletions src/transformers/models/beit/image_processing_beit_fast.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from typing import Optional, Union

import torch
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils import BatchFeature
from ...image_processing_utils_fast import (
Expand All @@ -38,16 +39,9 @@
from ...utils import (
TensorType,
auto_docstring,
is_torchvision_v2_available,
)


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


class BeitFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
r"""
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from typing import Optional, Union

import torch
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils_fast import (
BaseImageProcessorFast,
Expand All @@ -31,13 +32,7 @@
reorder_images,
)
from ...image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, PILImageResampling
from ...utils import auto_docstring, is_torchvision_v2_available


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
from ...utils import auto_docstring


def make_pixel_mask(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,17 +19,13 @@
import numpy as np
import PIL
import torch
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils_fast import BaseImageProcessorFast
from ...image_utils import ImageInput, PILImageResampling, SizeDict
from ...utils import auto_docstring, is_torchvision_v2_available, logging
from ...utils import auto_docstring, logging


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F

logger = logging.get_logger(__name__)


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@

import numpy as np
import torch
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils import BatchFeature
from ...image_processing_utils_fast import (
Expand All @@ -34,13 +35,7 @@
)
from ...image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ImageInput, PILImageResampling, SizeDict
from ...processing_utils import Unpack
from ...utils import TensorType, auto_docstring, is_torchvision_v2_available


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
from ...utils import TensorType, auto_docstring


class Cohere2VisionFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import torch
from torch import nn
from torchvision.io import read_image
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_processing_utils_fast import (
Expand All @@ -33,7 +34,7 @@
validate_annotations,
)
from ...processing_utils import Unpack
from ...utils import TensorType, auto_docstring, is_torchvision_v2_available, logging
from ...utils import TensorType, auto_docstring, logging
from ...utils.import_utils import requires
from .image_processing_conditional_detr import (
compute_segments,
Expand All @@ -43,12 +44,6 @@
)


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


logger = logging.get_logger(__name__)


Expand Down Expand Up @@ -433,13 +428,7 @@ def resize_annotation(
resample (`InterpolationMode`, defaults to `F.InterpolationMode.NEAREST_EXACT`):
The resampling filter to use when resizing the masks.
"""
interpolation = (
interpolation
if interpolation is not None
else F.InterpolationMode.NEAREST_EXACT
if is_torchvision_v2_available()
else F.InterpolationMode.NEAREST
)
interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST_EXACT
ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)]

new_annotation = {}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from typing import Optional, Union

import torch
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils import BatchFeature
from ...image_processing_utils_fast import (
Expand All @@ -37,16 +38,9 @@
from ...utils import (
TensorType,
auto_docstring,
is_torchvision_v2_available,
)


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


class ConvNextFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
"""
crop_pct (`float`, *optional*):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,12 +38,7 @@
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
is_vision_available,
logging,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging


if is_vision_available():
Expand Down
6 changes: 1 addition & 5 deletions src/transformers/models/deepseek_vl/modeling_deepseek_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,11 +29,7 @@
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
TransformersKwargs,
auto_docstring,
can_return_tuple,
)
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
from ..auto import AutoModel
from .configuration_deepseek_vl import DeepseekVLConfig

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@

import torch
from torchvision.io import read_image
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_processing_utils_fast import (
Expand All @@ -32,17 +33,11 @@
validate_annotations,
)
from ...processing_utils import Unpack
from ...utils import TensorType, auto_docstring, is_torchvision_v2_available, logging
from ...utils import TensorType, auto_docstring, logging
from ...utils.import_utils import requires
from .image_processing_deformable_detr import get_size_with_aspect_ratio


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


logger = logging.get_logger(__name__)


Expand Down Expand Up @@ -427,13 +422,7 @@ def resize_annotation(
resample (`InterpolationMode`, defaults to `F.InterpolationMode.NEAREST_EXACT`):
The resampling filter to use when resizing the masks.
"""
interpolation = (
interpolation
if interpolation is not None
else F.InterpolationMode.NEAREST_EXACT
if is_torchvision_v2_available()
else F.InterpolationMode.NEAREST
)
interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST_EXACT
ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)]

new_annotation = {}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@
from ...utils import (
TensorType,
auto_docstring,
is_torchvision_v2_available,
logging,
requires_backends,
)
Expand All @@ -41,10 +40,7 @@
from .modeling_depth_pro import DepthProDepthEstimatorOutput


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
from torchvision.transforms.v2 import functional as F


logger = logging.get_logger(__name__)
Expand Down
16 changes: 2 additions & 14 deletions src/transformers/models/detr/image_processing_detr_fast.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
import torch
from torch import nn
from torchvision.io import read_image
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_processing_utils_fast import (
Expand All @@ -49,7 +50,6 @@
from ...utils import (
TensorType,
auto_docstring,
is_torchvision_v2_available,
logging,
)
from ...utils.import_utils import requires
Expand All @@ -61,12 +61,6 @@
)


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F


logger = logging.get_logger(__name__)

SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
Expand Down Expand Up @@ -450,13 +444,7 @@ def resize_annotation(
resample (`InterpolationMode`, defaults to `F.InterpolationMode.NEAREST_EXACT`):
The resampling filter to use when resizing the masks.
"""
interpolation = (
interpolation
if interpolation is not None
else F.InterpolationMode.NEAREST_EXACT
if is_torchvision_v2_available()
else F.InterpolationMode.NEAREST
)
interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST_EXACT
ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)]

new_annotation = {}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,24 +17,19 @@
from typing import Optional, Union

import torch
from torchvision.transforms.v2 import functional as F

from transformers.image_processing_base import BatchFeature
from transformers.image_processing_utils_fast import BaseImageProcessorFast, group_images_by_shape, reorder_images
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling, SizeDict
from transformers.utils import (
TensorType,
auto_docstring,
is_torchvision_v2_available,
logging,
)
from transformers.utils.import_utils import requires


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F

logger = logging.get_logger(__name__)


Expand Down
7 changes: 1 addition & 6 deletions src/transformers/models/donut/image_processing_donut_fast.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from typing import Optional, Union

import torch
from torchvision.transforms.v2 import functional as F

from ...image_processing_utils_fast import BaseImageProcessorFast, BatchFeature, DefaultFastImageProcessorKwargs
from ...image_transforms import group_images_by_shape, reorder_images
Expand All @@ -25,16 +26,10 @@
from ...utils import (
TensorType,
auto_docstring,
is_torchvision_v2_available,
logging,
)


if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F

logger = logging.get_logger(__name__)


Expand Down
Loading