Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Performance improvement] "Bad tokens ids" optimization #6064

Merged
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
Show all changes
17 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 95 additions & 0 deletions src/transformers/data/test_generation_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import random
import unittest

import timeout_decorator

from transformers import is_torch_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch


if is_torch_available():
import torch

from transformers import (
MarianConfig,
MarianMTModel,
)


@require_torch
class GenerationUtilsTest(unittest.TestCase):
@cached_property
def config_and_model(self):
config = MarianConfig.from_pretrained("sshleifer/tiny-marian-en-de")
return config, MarianMTModel(config)

@require_torch
sshleifer marked this conversation as resolved.
Show resolved Hide resolved
def test_postprocess_next_token_scores(self):
config, model = self.config_and_model
# Initialize an input id tensor with batch size 8 and sequence length 12
input_ids = torch.arange(0, 96, 1).view((8, 12))

sshleifer marked this conversation as resolved.
Show resolved Hide resolved
bad_words_ids_test_cases = [[[299]], [[23, 24], [54]], [[config.eos_token_id]], []]
masked_scores = [
[(0, 299), (1, 299), (2, 299), (3, 299), (4, 299), (5, 299), (6, 299), (7, 299)],
[(1, 24), (0, 54), (1, 54), (2, 54), (3, 54), (4, 54), (5, 54), (6, 54), (7, 54)],
[
(0, config.eos_token_id),
(1, config.eos_token_id),
(2, config.eos_token_id),
(3, config.eos_token_id),
(4, config.eos_token_id),
(5, config.eos_token_id),
(6, config.eos_token_id),
(7, config.eos_token_id),
],
[],
]

for test_case_index, bad_words_ids in enumerate(bad_words_ids_test_cases):
# Initialize a scores tensor with batch size 8 and vocabulary size 300
scores = torch.rand((8, 300))
output = model.postprocess_next_token_scores(
scores,
input_ids,
0,
bad_words_ids,
13,
15,
config.max_length,
config.eos_token_id,
config.repetition_penalty,
32,
5,
)
for masked_score in masked_scores[test_case_index]:
self.assertTrue(output[masked_score[0], masked_score[1]] == -float("inf"))

@require_torch
@timeout_decorator.timeout(10)
def test_postprocess_next_token_scores_large_bad_words_list(self):

config, model = self.config_and_model
# Initialize an input id tensor with batch size 8 and sequence length 12
input_ids = torch.arange(0, 96, 1).view((8, 12))

bad_words_ids = []
for _ in range(100):
length_bad_word = random.randint(1, 4)
bad_words_ids.append(random.sample(range(1, 300), length_bad_word))

scores = torch.rand((8, 300))
_ = model.postprocess_next_token_scores(
scores,
input_ids,
0,
bad_words_ids,
13,
15,
config.max_length,
config.eos_token_id,
config.repetition_penalty,
32,
5,
)
37 changes: 31 additions & 6 deletions src/transformers/generation_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
# limitations under the License.

import logging
from typing import Iterable, Optional, Tuple
from typing import Iterable, List, Optional, Tuple

import torch
from torch import Tensor
Expand Down Expand Up @@ -89,11 +89,12 @@ def postprocess_next_token_scores(
scores[i, banned_tokens] = -float("inf")

if bad_words_ids is not None:
# Exclude EOS token (already processed)
bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids))
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)

for i, banned_tokens in enumerate(banned_tokens):
scores[i, banned_tokens] = -float("inf")
banned_tokens = calc_banned_bad_words_ids(input_ids.tolist(), bad_words_ids)
# Modify the scores in place by setting the banned tokens logits to `-inf`
set_scores_to_inf_for_banned_tokens(scores, banned_tokens)
sshleifer marked this conversation as resolved.
Show resolved Hide resolved

return scores

Expand Down Expand Up @@ -893,7 +894,7 @@ def _tokens_match(prev_tokens, tokens):
bad_words_ids
)

if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False:
if _tokens_match(prev_input_ids_slice, banned_token_seq[:-1]) is False:
# if tokens do not match continue
continue

Expand All @@ -904,6 +905,30 @@ def _tokens_match(prev_tokens, tokens):
return banned_tokens


def set_scores_to_inf_for_banned_tokens(scores: torch.Tensor, banned_tokens: List[List[int]]) -> None:
""" Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be
a list of list of banned tokens to ban in the format [[batch index, vocabulary position],...]
Args:
scores: logits distribution of shape (batch size, vocabulary size)
banned_tokens: list of list of tokens to ban of length (batch_size)
"""
banned_mask_list = []
for idx, batch_banned_tokens in enumerate(banned_tokens):
for token in batch_banned_tokens:
banned_mask_list.append([idx, token])
if not banned_mask_list:
return
banned_mask = torch.LongTensor(banned_mask_list)
indices = torch.ones(len(banned_mask))
# A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates:
# [ 0 1 1 ]
# [ 0 0 0 ]
# [ 1 0 0 ]

banned_mask = torch.sparse.LongTensor(banned_mask.t(), indices, scores.size()).to(scores.device).to_dense().bool()
scores.masked_fill_(banned_mask, -float("inf"))


def top_k_top_p_filtering(
logits: Tensor,
top_k: int = 0,
Expand Down