Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix doc examples #8082

Merged
merged 1 commit into from
Oct 27, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions src/transformers/file_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -651,7 +651,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> input_ids = inputs["input_ids"]
Expand All @@ -669,7 +669,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> input_dict = tokenizer(question, text, return_tensors='tf')
Expand All @@ -688,7 +688,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1
Expand All @@ -705,7 +705,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
>>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
Expand All @@ -722,7 +722,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
Expand All @@ -737,7 +737,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
Expand All @@ -758,7 +758,7 @@ def _prepare_output_docstrings(output_type, config_class):
>>> import tensorflow as tf

>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True))
>>> model = {model_class}.from_pretrained('{checkpoint}', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
Expand Down