Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tokenizers should be framework agnostic #8599

Merged
merged 5 commits into from
Nov 17, 2020
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions .github/workflows/self-push.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ on:

jobs:
run_tests_torch_gpu:
runs-on: [self-hosted, single-gpu]
runs-on: [self-hosted, gpu, single-gpu]
steps:
- uses: actions/checkout@v2
- name: Python version
Expand Down Expand Up @@ -86,7 +86,7 @@ jobs:


run_tests_tf_gpu:
runs-on: [self-hosted, single-gpu]
runs-on: [self-hosted, gpu, single-gpu]
steps:
- uses: actions/checkout@v2
- name: Python version
Expand Down Expand Up @@ -154,7 +154,7 @@ jobs:
path: reports

run_tests_torch_multi_gpu:
runs-on: [self-hosted, multi-gpu]
runs-on: [self-hosted, gpu, multi-gpu]
steps:
- uses: actions/checkout@v2
- name: Python version
Expand Down Expand Up @@ -213,7 +213,7 @@ jobs:
path: reports

run_tests_tf_multi_gpu:
runs-on: [self-hosted, multi-gpu]
runs-on: [self-hosted, gpu, multi-gpu]
steps:
- uses: actions/checkout@v2
- name: Python version
Expand Down
9 changes: 5 additions & 4 deletions .github/workflows/self-scheduled.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,14 @@ on:
push:
branches:
- ci_*
- framework-agnostic-tokenizers
repository_dispatch:
schedule:
- cron: "0 0 * * *"

jobs:
run_all_tests_torch_gpu:
runs-on: [self-hosted, single-gpu]
runs-on: [self-hosted, gpu, single-gpu]
steps:
- uses: actions/checkout@v2

Expand Down Expand Up @@ -109,7 +110,7 @@ jobs:


run_all_tests_tf_gpu:
runs-on: [self-hosted, single-gpu]
runs-on: [self-hosted, gpu, single-gpu]
steps:
- uses: actions/checkout@v2

Expand Down Expand Up @@ -188,7 +189,7 @@ jobs:
path: reports

run_all_tests_torch_multi_gpu:
runs-on: [self-hosted, multi-gpu]
runs-on: [self-hosted, gpu, multi-gpu]
steps:
- uses: actions/checkout@v2

Expand Down Expand Up @@ -279,7 +280,7 @@ jobs:
path: reports

run_all_tests_tf_multi_gpu:
runs-on: [self-hosted, multi-gpu]
runs-on: [self-hosted, gpu, multi-gpu]
steps:
- uses: actions/checkout@v2

Expand Down
4 changes: 2 additions & 2 deletions docs/source/model_doc/marian.rst
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ require 3 character language codes:
tokenizer = MarianTokenizer.from_pretrained(model_name)
print(tokenizer.supported_language_codes)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text))
translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt"))
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
# ["c'est une phrase en anglais que nous voulons traduire en français",
# 'Isto deve ir para o português.',
Expand Down Expand Up @@ -150,7 +150,7 @@ Example of translating english to many romance languages, using old-style 2 char
print(tokenizer.supported_language_codes)

model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text))
translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt"))
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
# ["c'est une phrase en anglais que nous voulons traduire en français", 'Isto deve ir para o português.', 'Y esto al español']

Expand Down
4 changes: 2 additions & 2 deletions docs/source/model_doc/mbart.rst
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ the sequences for sequence-to-sequence fine-tuning.

example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
batch = tokenizer.prepare_seq2seq_batch(example_english_phrase, src_lang="en_XX", tgt_lang="ro_RO", tgt_texts=expected_translation_romanian)
batch = tokenizer.prepare_seq2seq_batch(example_english_phrase, src_lang="en_XX", tgt_lang="ro_RO", tgt_texts=expected_translation_romanian, return_tensors="pt")
model(input_ids=batch['input_ids'], labels=batch['labels']) # forward pass

- Generation
Expand All @@ -58,7 +58,7 @@ the sequences for sequence-to-sequence fine-tuning.
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro")
article = "UN Chief Says There Is No Military Solution in Syria"
batch = tokenizer.prepare_seq2seq_batch(src_texts=[article], src_lang="en_XX")
batch = tokenizer.prepare_seq2seq_batch(src_texts=[article], src_lang="en_XX", return_tensors="pt")
translated_tokens = model.generate(**batch, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
assert translation == "Şeful ONU declară că nu există o soluţie militară în Siria"
Expand Down
2 changes: 1 addition & 1 deletion docs/source/model_doc/pegasus.rst
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ Usage Example
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
batch = tokenizer.prepare_seq2seq_batch(src_text, truncation=True, padding='longest').to(torch_device)
batch = tokenizer.prepare_seq2seq_batch(src_text, truncation=True, padding='longest', return_tensors="pt").to(torch_device)
translated = model.generate(**batch)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
assert tgt_text[0] == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
Expand Down
2 changes: 1 addition & 1 deletion model_cards/tuner007/pegasus_paraphrase/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)

def get_response(input_text,num_return_sequences):
batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=60).to(torch_device)
batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device)
translated = model.generate(**batch,max_length=60,num_beams=10, num_return_sequences=num_return_sequences, temperature=1.5)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text
Expand Down
2 changes: 1 addition & 1 deletion model_cards/tuner007/pegasus_qa/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_dev

def get_answer(question, context):
input_text = "question: %s text: %s" % (question,context)
batch = tokenizer.prepare_seq2seq_batch([input_text], truncation=True, padding='longest').to(torch_device)
batch = tokenizer.prepare_seq2seq_batch([input_text], truncation=True, padding='longest', return_tensors="pt").to(torch_device)
translated = model.generate(**batch)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text[0]
Expand Down
2 changes: 1 addition & 1 deletion scripts/fsmt/fsmt-make-super-tiny-model.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@
print(f"num of params {tiny_model.num_parameters()}")

# Test
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"], return_tensors="pt")
outputs = tiny_model(**batch)

print("test output:", len(outputs.logits[0]))
Expand Down
2 changes: 1 addition & 1 deletion scripts/fsmt/fsmt-make-tiny-model.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
print(f"num of params {tiny_model.num_parameters()}")

# Test
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"], return_tensors="pt")
outputs = tiny_model(**batch)

print("test output:", len(outputs.logits[0]))
Expand Down
67 changes: 5 additions & 62 deletions src/transformers/models/bart/tokenization_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@

from typing import List, Optional

from ...tokenization_utils_base import BatchEncoding
from transformers import add_start_docstrings

from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING, BatchEncoding
from ...utils import logging
from ..roberta.tokenization_roberta import RobertaTokenizer

Expand Down Expand Up @@ -54,77 +56,18 @@ class BartTokenizer(RobertaTokenizer):
"merges_file": {m: merges_url for m in _all_bart_models},
}

@add_start_docstrings(PREPARE_SEQ2SEQ_BATCH_DOCSTRING)
def prepare_seq2seq_batch(
self,
src_texts: List[str],
tgt_texts: Optional[List[str]] = None,
max_length: Optional[int] = None,
max_target_length: Optional[int] = None,
padding: str = "longest",
return_tensors: str = "None",
return_tensors: str = None,
truncation=True,
**kwargs,
) -> BatchEncoding:
r"""

Prepare a batch that can be passed directly to an instance of :class:`~transformers.BartModel`.

Args:
src_texts: (:obj:`List[str]`):
List of documents to summarize or source language texts.
tgt_texts: (:obj:`List[str]`, `optional`):
List of summaries or target language texts.
max_length (:obj:`int`, `optional`):
Controls the maximum length for encoder inputs (documents to summarize or source language texts). If
left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
max_target_length (:obj:`int`, `optional`):
Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or
set to :obj:`None`, this will use the max_length value.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls padding. Accepts the following values:

* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
single sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`, defaults to "pt"):
If set, will return tensors instead of list of python integers. Acceptable values are:

* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`True`):
Activates and controls truncation. Accepts the following values:

* :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument
:obj:`max_length` or to the maximum acceptable input length for the model if that argument is not
provided. This will truncate token by token, removing a token from the longest sequence in the pair
if a pair of sequences (or a batch of pairs) is provided.
* :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
* :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
* :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with
sequence lengths greater than the model maximum admissible input size).
**kwargs:
Additional keyword arguments passed along to :obj:`self.__call__`.

Returns:
:class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields:

- **input_ids** -- List of token ids to be fed to the encoder.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
- **labels** -- List of token ids for tgt_texts

The full set of keys ``[input_ids, attention_mask, labels]``, will only be returned if tgt_texts is passed.
Otherwise, input_ids, attention_mask will be the only keys.
"""
kwargs.pop("src_lang", None)
kwargs.pop("tgt_lang", None)
if max_length is None:
Expand Down
69 changes: 5 additions & 64 deletions src/transformers/models/bart/tokenization_bart_fast.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@

from typing import List, Optional

from ...tokenization_utils_base import BatchEncoding
from transformers import add_start_docstrings

from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING, BatchEncoding
from ...utils import logging
from ..roberta.tokenization_roberta_fast import RobertaTokenizerFast
from .tokenization_bart import BartTokenizer
Expand Down Expand Up @@ -49,79 +51,18 @@ class BartTokenizerFast(RobertaTokenizerFast):
}
slow_tokenizer_class = BartTokenizer

@add_start_docstrings(PREPARE_SEQ2SEQ_BATCH_DOCSTRING)
def prepare_seq2seq_batch(
self,
src_texts: List[str],
tgt_texts: Optional[List[str]] = None,
max_length: Optional[int] = None,
max_target_length: Optional[int] = None,
padding: str = "longest",
return_tensors: str = "None",
return_tensors: str = None,
LysandreJik marked this conversation as resolved.
Show resolved Hide resolved
truncation=True,
**kwargs,
) -> BatchEncoding:
r"""

Prepare a batch that can be passed directly to an instance of :class:`~transformers.BartModel`.

Args:
src_texts: (:obj:`List[str]`):
List of documents to summarize or source language texts.
tgt_texts: (:obj:`List[str]`, `optional`):
List of summaries or target language texts.
max_length (:obj:`int`, `optional`):
Controls the maximum length for encoder inputs (documents to summarize or source language texts). If
left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
max_target_length (:obj:`int`, `optional`):
Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or
set to :obj:`None`, this will use the max_length value.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls padding. Accepts the following values:

* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
single sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`, defaults to "pt"):
If set, will return tensors instead of list of python integers. Acceptable values are:

* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`True`):
Activates and controls truncation. Accepts the following values:

* :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument
:obj:`max_length` or to the maximum acceptable input length for the model if that argument is not
provided. This will truncate token by token, removing a token from the longest sequence in the pair
if a pair of sequences (or a batch of pairs) is provided.
* :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
* :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
* :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with
sequence lengths greater than the model maximum admissible input size).
**kwargs:
Additional keyword arguments passed along to :obj:`self.__call__`.

Returns:
:class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields:

- **input_ids** -- List of token ids to be fed to the encoder.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
- **decoder_input_ids** -- List of token ids to be fed to the decoder.
- **decoder_attention_mask** -- List of indices specifying which tokens should be attended to by the
decoder. This does not include causal mask, which is built by the model.

The full set of keys ``[input_ids, attention_mask, decoder_input_ids, decoder_attention_mask]``, will only
be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys.
"""
if max_length is None:
max_length = self.model_max_length
model_inputs: BatchEncoding = self(
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/fsmt/tokenization_fsmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -491,7 +491,7 @@ def prepare_seq2seq_batch(
tgt_texts: Optional[List[str]] = None,
max_length: Optional[int] = None,
max_target_length: Optional[int] = None,
return_tensors: str = "pt",
return_tensors: str = None,
LysandreJik marked this conversation as resolved.
Show resolved Hide resolved
truncation=True,
padding="longest",
**unused,
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/marian/modeling_marian.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ class MarianMTModel(BartForConditionalGeneration):

>>> model = MarianMTModel.from_pretrained(mname)
>>> tok = MarianTokenizer.from_pretrained(mname)
>>> batch = tok.prepare_seq2seq_batch(src_texts=[sample_text]) # don't need tgt_text for inference
>>> batch = tok.prepare_seq2seq_batch(src_texts=[sample_text], return_tensors="pt") # don't need tgt_text for inference
>>> gen = model.generate(**batch) # for forward pass: model(**batch)
>>> words: List[str] = tok.batch_decode(gen, skip_special_tokens=True) # returns "Where is the bus stop ?"

Expand Down
Loading