generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* first commit * uncomment * other tests adaptations * Remove unused variable in test_setup_chat_format * Remove unused import statement * style * Add Bart model * Update BCOTrainerTester class in test_bco_trainer.py * Update model IDs and tokenizers in test files * Add new models and processors * Update model IDs in test files * Fix formatting issue in test_dataset_formatting.py * Refactor dataset formatting in test_dataset_formatting.py * Fix dataset sequence length in SFTTrainerTester * Remove tokenizer * Remove print statement * Add reward_model_path and sft_model_path to PPO trainer * Fix tokenizer padding issue * Add chat template for testing purposes in PaliGemma model * Update PaliGemma model and chat template * Increase learning rate to speed up test * Update model names in run_dpo.sh and run_sft.sh scripts * Update model and dataset names * Fix formatting issue in test_dataset_formatting.py * Fix formatting issue in test_dataset_formatting.py * Remove unused chat template * Update model generation script * additional models * Update model references in test files * Remove unused imports in test_online_dpo_trainer.py * Add is_llm_blender_available import and update reward_tokenizer * Refactor test_online_dpo_trainer.py: Move skipped test case decorator * remove models without chat templates * Update model names in scripts and tests * Update model_id in test_modeling_value_head.py * Update model versions in test files * Fix formatting issue in test_dataset_formatting.py * Update embedding model ID in BCOTrainerTester * Update test_online_dpo_trainer.py with reward model changes * Update expected formatted text in test_dataset_formatting.py * Add reward_tokenizer to TestOnlineDPOTrainer * fix tests * Add SIMPLE_CHAT_TEMPLATE to T5 tokenizer * Fix dummy_text format in test_rloo_trainer.py * Skip outdated test for chatML data collator * Add new vision language models * Commented out unused model IDs in test_vdpo_trainer * Update model and vision configurations in generate_tiny_models.py and test_dpo_trainer.py * Update model and tokenizer references * Don't push if it already exists * Add comment explaining test skip * Fix model_exists function call and add new models * Update LlavaForConditionalGeneration model and processor * `qgallouedec` -> `trl-internal-testing`
- Loading branch information
1 parent
ee3cbe1
commit 453db5c
Showing
32 changed files
with
482 additions
and
275 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# This script generates tiny models used in the TRL library for unit tests. It pushes them to the Hub under the | ||
# `trl-internal-testing` organization. | ||
# This script is meant to be run when adding new tiny model to the TRL library. | ||
|
||
from huggingface_hub import HfApi, ModelCard | ||
from transformers import ( | ||
AutoProcessor, | ||
AutoTokenizer, | ||
BartConfig, | ||
BartModel, | ||
BloomConfig, | ||
BloomForCausalLM, | ||
CLIPVisionConfig, | ||
CohereConfig, | ||
CohereForCausalLM, | ||
DbrxConfig, | ||
DbrxForCausalLM, | ||
FalconMambaConfig, | ||
FalconMambaForCausalLM, | ||
Gemma2Config, | ||
Gemma2ForCausalLM, | ||
GemmaConfig, | ||
GemmaForCausalLM, | ||
GPT2Config, | ||
GPT2LMHeadModel, | ||
GPTNeoXConfig, | ||
GPTNeoXForCausalLM, | ||
Idefics2Config, | ||
Idefics2ForConditionalGeneration, | ||
LlamaConfig, | ||
LlamaForCausalLM, | ||
LlavaConfig, | ||
LlavaForConditionalGeneration, | ||
LlavaNextConfig, | ||
LlavaNextForConditionalGeneration, | ||
MistralConfig, | ||
MistralForCausalLM, | ||
OPTConfig, | ||
OPTForCausalLM, | ||
PaliGemmaConfig, | ||
PaliGemmaForConditionalGeneration, | ||
Phi3Config, | ||
Phi3ForCausalLM, | ||
Qwen2Config, | ||
Qwen2ForCausalLM, | ||
SiglipVisionConfig, | ||
T5Config, | ||
T5ForConditionalGeneration, | ||
) | ||
from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig | ||
|
||
|
||
ORGANIZATION = "trl-internal-testing" | ||
|
||
MODEL_CARD = """ | ||
--- | ||
library_name: transformers | ||
tags: [trl] | ||
--- | ||
# Tiny {model_class_name} | ||
This is a minimal model built for unit tests in the [TRL](https://github.com/huggingface/trl) library. | ||
""" | ||
|
||
|
||
api = HfApi() | ||
|
||
|
||
def push_to_hub(model, tokenizer, suffix=None): | ||
model_class_name = model.__class__.__name__ | ||
content = MODEL_CARD.format(model_class_name=model_class_name) | ||
model_card = ModelCard(content) | ||
repo_id = f"{ORGANIZATION}/tiny-{model_class_name}" | ||
if suffix is not None: | ||
repo_id += f"-{suffix}" | ||
|
||
if api.repo_exists(repo_id): | ||
print(f"Model {repo_id} already exists, skipping") | ||
else: | ||
model.push_to_hub(repo_id) | ||
tokenizer.push_to_hub(repo_id) | ||
model_card.push_to_hub(repo_id) | ||
|
||
|
||
# Decoder models | ||
for model_id, config_class, model_class, suffix in [ | ||
("bigscience/bloomz-560m", BloomConfig, BloomForCausalLM, None), | ||
("CohereForAI/aya-expanse-8b", CohereConfig, CohereForCausalLM, None), | ||
("databricks/dbrx-instruct", DbrxConfig, DbrxForCausalLM, None), | ||
("tiiuae/falcon-7b-instruct", FalconMambaConfig, FalconMambaForCausalLM, None), | ||
("google/gemma-2-2b-it", Gemma2Config, Gemma2ForCausalLM, None), | ||
("google/gemma-7b-it", GemmaConfig, GemmaForCausalLM, None), | ||
("openai-community/gpt2", GPT2Config, GPT2LMHeadModel, None), | ||
("EleutherAI/pythia-14m", GPTNeoXConfig, GPTNeoXForCausalLM, None), | ||
("meta-llama/Meta-Llama-3-8B-Instruct", LlamaConfig, LlamaForCausalLM, "3"), | ||
("meta-llama/Llama-3.1-8B-Instruct", LlamaConfig, LlamaForCausalLM, "3.1"), | ||
("meta-llama/Llama-3.2-1B-Instruct", LlamaConfig, LlamaForCausalLM, "3.2"), | ||
("mistralai/Mistral-7B-Instruct-v0.1", MistralConfig, MistralForCausalLM, "0.1"), | ||
("mistralai/Mistral-7B-Instruct-v0.2", MistralConfig, MistralForCausalLM, "0.2"), | ||
("facebook/opt-1.3b", OPTConfig, OPTForCausalLM, None), | ||
("microsoft/Phi-3.5-mini-instruct", Phi3Config, Phi3ForCausalLM, None), | ||
("Qwen/Qwen2.5-32B-Instruct", Qwen2Config, Qwen2ForCausalLM, "2.5"), | ||
("Qwen/Qwen2.5-Coder-0.5B", Qwen2Config, Qwen2ForCausalLM, "2.5-Coder"), | ||
]: | ||
tokenizer = AutoTokenizer.from_pretrained(model_id) | ||
config = config_class( | ||
vocab_size=tokenizer.vocab_size + len(tokenizer.added_tokens_encoder.keys()), | ||
hidden_size=8, | ||
num_attention_heads=4, | ||
num_key_value_heads=2, | ||
num_hidden_layers=2, | ||
intermediate_size=32, | ||
) | ||
model = model_class(config) | ||
push_to_hub(model, tokenizer, suffix) | ||
|
||
|
||
# Encoder-decoder models | ||
for model_id, config_class, model_class, suffix in [ | ||
("google/flan-t5-small", T5Config, T5ForConditionalGeneration, None), | ||
("facebook/bart-base", BartConfig, BartModel, None), | ||
]: | ||
tokenizer = AutoTokenizer.from_pretrained(model_id) | ||
config = config_class( | ||
vocab_size=tokenizer.vocab_size + len(tokenizer.added_tokens_encoder.keys()), | ||
d_model=16, | ||
encoder_layers=2, | ||
decoder_layers=2, | ||
d_kv=2, | ||
d_ff=64, | ||
num_layers=6, | ||
num_heads=8, | ||
decoder_start_token_id=0, | ||
is_encoder_decoder=True, | ||
) | ||
model = model_class(config) | ||
push_to_hub(model, tokenizer, suffix) | ||
|
||
|
||
# Vision Language Models | ||
# fmt: off | ||
for model_id, config_class, text_config_class, vision_config_class, model_class in [ | ||
("HuggingFaceM4/idefics2-8b", Idefics2Config, MistralConfig, Idefics2VisionConfig, Idefics2ForConditionalGeneration), | ||
("llava-hf/llava-1.5-7b-hf", LlavaConfig, LlamaConfig, CLIPVisionConfig, LlavaForConditionalGeneration), | ||
("llava-hf/llava-v1.6-mistral-7b-hf", LlavaNextConfig, MistralConfig, CLIPVisionConfig, LlavaNextForConditionalGeneration), | ||
("google/paligemma-3b-pt-224", PaliGemmaConfig, GemmaConfig, SiglipVisionConfig, PaliGemmaForConditionalGeneration), | ||
]: | ||
# fmt: on | ||
processor = AutoProcessor.from_pretrained(model_id) | ||
kwargs = {} | ||
if config_class == PaliGemmaConfig: | ||
kwargs["projection_dim"] = 8 | ||
vision_kwargs = {} | ||
if vision_config_class in [CLIPVisionConfig, SiglipVisionConfig]: | ||
vision_kwargs["projection_dim"] = 8 | ||
if vision_config_class == CLIPVisionConfig: | ||
vision_kwargs["image_size"] = 336 | ||
vision_kwargs["patch_size"] = 14 | ||
config = config_class( | ||
text_config=text_config_class( | ||
vocab_size=processor.tokenizer.vocab_size + len(processor.tokenizer.added_tokens_encoder), | ||
hidden_size=8, | ||
num_attention_heads=4, | ||
num_key_value_heads=2, | ||
num_hidden_layers=2, | ||
intermediate_size=32, | ||
), | ||
vision_config=vision_config_class( | ||
hidden_size=8, | ||
num_attention_heads=4, | ||
num_hidden_layers=2, | ||
intermediate_size=32, | ||
**vision_kwargs, | ||
), | ||
**kwargs, | ||
) | ||
model = model_class(config) | ||
push_to_hub(model, processor) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.