generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
👁️ Added SFT support for
SmolVLM
models via standalone script `sft_…
…vlm_smol_vlm.py` (#2409) * Added SFT VLM script for SmolVLM * Run make precommit * Updated command example
- Loading branch information
1 parent
a34e9bf
commit e1d7813
Showing
1 changed file
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
pip install pillow | ||
# Tested on 8x H100 GPUs | ||
accelerate launch | ||
--config_file=examples/accelerate_configs/deepspeed_zero3.yaml \ | ||
sft_vlm_smol_vlm.py \ | ||
--dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ | ||
--model_name_or_path HuggingFaceTB/SmolVLM-Instruct \ | ||
--per_device_train_batch_size 1 \ | ||
--gradient_accumulation_steps 1 \ | ||
--output_dir sft-smol-vlm-hf \ | ||
--bf16 \ | ||
--torch_dtype bfloat16 \ | ||
--gradient_checkpointing \ | ||
--use_peft \ | ||
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj | ||
For LLaVA-NeXT, use: (requires transformers>=4.45) | ||
--model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf | ||
For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1) | ||
--model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct | ||
""" | ||
|
||
import torch | ||
from datasets import load_dataset | ||
from transformers import ( | ||
AutoModelForVision2Seq, | ||
AutoProcessor, | ||
Idefics3ForConditionalGeneration, | ||
LlavaForConditionalGeneration, | ||
) | ||
|
||
from trl import ( | ||
ModelConfig, | ||
ScriptArguments, | ||
SFTConfig, | ||
SFTTrainer, | ||
TrlParser, | ||
get_kbit_device_map, | ||
get_peft_config, | ||
get_quantization_config, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) | ||
script_args, training_args, model_config = parser.parse_args_and_config() | ||
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | ||
training_args.remove_unused_columns = False | ||
training_args.dataset_kwargs = {"skip_prepare_dataset": True} | ||
|
||
################ | ||
# Model, Tokenizer & Processor | ||
################ | ||
torch_dtype = ( | ||
model_config.torch_dtype | ||
if model_config.torch_dtype in ["auto", None] | ||
else getattr(torch, model_config.torch_dtype) | ||
) | ||
quantization_config = get_quantization_config(model_config) | ||
model_kwargs = dict( | ||
revision=model_config.model_revision, | ||
attn_implementation=model_config.attn_implementation, | ||
torch_dtype=torch_dtype, | ||
device_map=get_kbit_device_map() if quantization_config is not None else None, | ||
quantization_config=quantization_config, | ||
) | ||
processor = AutoProcessor.from_pretrained( | ||
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code | ||
) | ||
|
||
model = AutoModelForVision2Seq.from_pretrained( | ||
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs | ||
) | ||
|
||
################ | ||
# Create a data collator to encode text and image pairs | ||
################ | ||
def collate_fn(examples): | ||
# Get the texts and images, and apply the chat template | ||
texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] | ||
images = [example["images"] for example in examples] | ||
if isinstance(model, LlavaForConditionalGeneration): | ||
# LLava1.5 does not support multiple images | ||
images = [image[0] for image in images] | ||
|
||
# Tokenize the texts and process the images | ||
batch = processor(text=texts, images=images, return_tensors="pt", padding=True) | ||
|
||
# The labels are the input_ids, and we mask the padding tokens in the loss computation | ||
labels = batch["input_ids"].clone() | ||
labels[labels == processor.tokenizer.pad_token_id] = -100 # | ||
# Ignore the image token index in the loss computation (model specific) | ||
if isinstance(model, Idefics3ForConditionalGeneration): | ||
image_token_id = processor.tokenizer.additional_special_tokens_ids[ | ||
processor.tokenizer.additional_special_tokens.index("<image>") | ||
] | ||
else: | ||
image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token) | ||
labels[labels == image_token_id] = -100 | ||
batch["labels"] = labels | ||
|
||
return batch | ||
|
||
################ | ||
# Dataset | ||
################ | ||
dataset = load_dataset(script_args.dataset_name) | ||
|
||
################ | ||
# Training | ||
################ | ||
trainer = SFTTrainer( | ||
model=model, | ||
args=training_args, | ||
data_collator=collate_fn, | ||
train_dataset=dataset[script_args.dataset_train_split], | ||
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | ||
processing_class=processor.tokenizer, | ||
peft_config=get_peft_config(model_config), | ||
) | ||
|
||
trainer.train() | ||
|
||
# Save and push to hub | ||
trainer.save_model(training_args.output_dir) | ||
if training_args.push_to_hub: | ||
trainer.push_to_hub(dataset_name=script_args.dataset_name) | ||
if trainer.accelerator.is_main_process: | ||
processor.push_to_hub(training_args.hub_model_id) |