Skip to content

High-performance Keypoint-Mask RCNN Models (detectron2)

Notifications You must be signed in to change notification settings

hukkelas/keypoint_mask_rcnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

High-performance Keypoint-Mask RCNN Models (detectron2)

This repository provides pre-trained Keypoint-Mask RCNN that predicts instance mask, keypoints and boxes. All models are trained with detectron2.

Why?

The pre-trained keypoint R-CNN models in the detectron2 model zoo do not have mask heads and, thus, only predict keypoints and boxes (not instance masks).

Install

Follow the detectron2 installation instructions.

The following works for me:

pip install 'git+https://github.com/facebookresearch/detectron2.git'

Pre-trained models

Name pre-train inference time (s/im) box AP kp. AP mask AP Weight path
R-50 FPN (detectron2 pre-trained) IN1k -- 53.6 64.0 --* [weight]
R-50 FPN-3x (detectron2 pre-trained) IN1k -- 55.4 65.5 --* [weight]
R-50 Mask R-CNN FPN-1x (ours) IN1k -- 55.1 65.3 47.9 [weight] [metrics]
MViTv2-B Cascade Mask R-CNN (ours) [original config] IN21K, sup, COCO -- 65.6 67.2 55.0 [weight] [metrics]
regnety_4gf_FPN [original config] COCO -- 59.4 67.0 51.4 [weight] [metrics]

*: The pre-trained detectron2 Keypoint R-CNN has no mask head.

Usage

You can directly use detect.py:

python3 detect.py path_to_image.png

The script accepts config-file arguments to change the detection model:

python3 detect.py --help
Usage: detect.py [OPTIONS] IMPATH

Options:
  --config-file TEXT       Path to a config file
  --model-url TEXT         Path to model weight
  --score-threshold FLOAT
  --help                   Show this message and exit.

For example, to use the MViTv2 model, you can type:

python3 detect.py images/11_Meeting_Meeting_11_Meeting_Meeting_11_176.jpg --model-url  https://folk.ntnu.no/haakohu/checkpoints/maskrcnn_keypoint/mvitv2_b_keypoint_cascade_rcnn.pth --config-file configs/mvitv2_b_keypoint_cascade_rcnn.py

Or, in python you can simply use the following lines:

from detect import KeypointDetector
config_file = "configs/keypoint_maskrcnn_R_50_FPN_1x.py"
model_url = "https://folk.ntnu.no/haakohu/checkpoints/maskrcnn_keypoint/keypoint_maskrcnn_R_50_FPN_1x.pth"
score_threshold = .5
impath = # a path to an image.
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu
detector = KeypointDetector(config_file, model_url, score_threshold, device)
im = np.array(Image.open(impath).convert("RGB"))
instances = detector.predict(im)
visualized_prediction = detector.visualize_prediction(im, instances)
Image.fromarray(visualized_prediction).show()

Training

To train the network, use lazyconfig_train_net.py found in the detectron2 repository.

About

High-performance Keypoint-Mask RCNN Models (detectron2)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages