forked from sail-sg/Adan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adan.py
290 lines (251 loc) · 11 KB
/
adan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer
from typing import List
class Adan(Optimizer):
"""
Implements a pytorch variant of Adan
Adan was proposed in
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
https://arxiv.org/abs/2208.06677
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float, flot], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.98, 0.92, 0.99))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): decoupled weight decay (L2 penalty) (default: 0)
max_grad_norm (float, optional): value used to clip
global grad norm (default: 0.0 no clip)
no_prox (bool): how to perform the decoupled weight decay (default: False)
foreach (bool): if True would use torch._foreach implementation. It's faster but uses
slightly more memory. (default: True)
"""
def __init__(self, params, lr=1e-3, betas=(0.98, 0.92, 0.99), eps=1e-8,
weight_decay=0.0, max_grad_norm=0.0, no_prox=False, foreach: bool=True):
if not 0.0 <= max_grad_norm:
raise ValueError("Invalid Max grad norm: {}".format(max_grad_norm))
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= betas[2] < 1.0:
raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay,
max_grad_norm=max_grad_norm, no_prox=no_prox, foreach=foreach)
super().__init__(params, defaults)
def __setstate__(self, state):
super(Adan, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('no_prox', False)
@torch.no_grad()
def restart_opt(self):
for group in self.param_groups:
group['step'] = 0
for p in group['params']:
if p.requires_grad:
state = self.state[p]
# State initialization
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
# Exponential moving average of gradient difference
state['exp_avg_diff'] = torch.zeros_like(p)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
if self.defaults['max_grad_norm'] > 0:
device = self.param_groups[0]['params'][0].device
global_grad_norm = torch.zeros(1, device=device)
max_grad_norm = torch.tensor(self.defaults['max_grad_norm'], device=device)
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
grad = p.grad
global_grad_norm.add_(grad.pow(2).sum())
global_grad_norm = torch.sqrt(global_grad_norm)
clip_global_grad_norm = torch.clamp(max_grad_norm / (global_grad_norm + group['eps']), max=1.0)
else:
clip_global_grad_norm = 1.0
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
exp_avg_diffs = []
pre_grads = []
beta1, beta2, beta3 = group['betas']
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
bias_correction1 = 1.0 - beta1 ** group['step']
bias_correction2 = 1.0 - beta2 ** group['step']
bias_correction3 = 1.0 - beta3 ** group['step']
for p in group['params']:
if p.grad is None:
continue
params_with_grad.append(p)
grads.append(p.grad)
state = self.state[p]
if len(state) == 0:
state['exp_avg'] = torch.zeros_like(p)
state['exp_avg_sq'] = torch.zeros_like(p)
state['exp_avg_diff'] = torch.zeros_like(p)
if 'pre_grad' not in state or group['step'] == 1:
# at first step grad wouldn't be clipped by `clip_global_grad_norm`
# this is only to simplify implementation
state['pre_grad'] = p.grad
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
exp_avg_diffs.append(state['exp_avg_diff'])
pre_grads.append(state['pre_grad'])
kwargs = dict(
params=params_with_grad,
grads=grads,
exp_avgs=exp_avgs,
exp_avg_sqs=exp_avg_sqs,
exp_avg_diffs=exp_avg_diffs,
pre_grads=pre_grads,
beta1=beta1,
beta2=beta2,
beta3=beta3,
bias_correction1=bias_correction1,
bias_correction2=bias_correction2,
bias_correction3_sqrt=math.sqrt(bias_correction3),
lr=group['lr'],
weight_decay=group['weight_decay'],
eps=group['eps'],
no_prox=group['no_prox'],
clip_global_grad_norm=clip_global_grad_norm,
)
if group["foreach"]:
copy_grads = _multi_tensor_adan(**kwargs)
else:
copy_grads = _single_tensor_adan(**kwargs)
for p, copy_grad in zip(params_with_grad, copy_grads):
self.state[p]['pre_grad'] = copy_grad
return loss
def _single_tensor_adan(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
exp_avg_diffs: List[Tensor],
pre_grads: List[Tensor],
*,
beta1: float,
beta2: float,
beta3: float,
bias_correction1: float,
bias_correction2: float,
bias_correction3_sqrt: float,
lr: float,
weight_decay: float,
eps: float,
no_prox: bool,
clip_global_grad_norm: Tensor,
):
copy_grads = []
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
exp_avg_diff = exp_avg_diffs[i]
pre_grad = pre_grads[i]
grad = grad.mul_(clip_global_grad_norm)
copy_grads.append(grad.clone())
diff = grad - pre_grad
update = grad + beta2 * diff
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t
exp_avg_diff.mul_(beta2).add_(diff, alpha=1 - beta2) # diff_t
exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1 - beta3) # n_t
denom = ((exp_avg_sq).sqrt() / bias_correction3_sqrt).add_(eps)
update = ((exp_avg / bias_correction1 + beta2 * exp_avg_diff / bias_correction2)).div_(denom)
if no_prox:
param.mul_(1 - lr * weight_decay)
param.add_(update, alpha=-lr)
else:
param.add_(update, alpha=-lr)
param.div_(1 + lr * weight_decay)
return copy_grads
def _multi_tensor_adan(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
exp_avg_diffs: List[Tensor],
pre_grads: List[Tensor],
*,
beta1: float,
beta2: float,
beta3: float,
bias_correction1: float,
bias_correction2: float,
bias_correction3_sqrt: float,
lr: float,
weight_decay: float,
eps: float,
no_prox: bool,
clip_global_grad_norm: Tensor,
):
if clip_global_grad_norm<1.0:
torch._foreach_mul_(grads, clip_global_grad_norm.item())
copy_grads = [g.clone() for g in grads]
diff = torch._foreach_sub(grads, pre_grads)
# NOTE: line below while looking identical gives different result, due to float precision errors.
# using mul+add produces identical results to single-tensor, using add+alpha doesn't
# On cuda this difference doesn't matter due to its' own precision non-determinism
# update = torch._foreach_add(grads, torch._foreach_mul(diff, beta2))
update = torch._foreach_add(grads, diff, alpha=beta2)
torch._foreach_mul_(exp_avgs, beta1)
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t
torch._foreach_mul_(exp_avg_diffs, beta2)
torch._foreach_add_(exp_avg_diffs, diff, alpha=1 - beta2) # diff_t
torch._foreach_mul_(exp_avg_sqs, beta3)
torch._foreach_addcmul_(exp_avg_sqs, update, update, value=1 - beta3) # n_t
denom = torch._foreach_sqrt(exp_avg_sqs)
torch._foreach_div_(denom, bias_correction3_sqrt)
torch._foreach_add_(denom, eps)
update = torch._foreach_div(exp_avgs, bias_correction1)
# NOTE: same issue as above. beta2 * diff / bias_correction2 != diff * (beta2 / bias_correction2)
# using faster version by default.
# torch._foreach_add_(update, torch._foreach_div(torch._foreach_mul(exp_avg_diffs, beta2), bias_correction2))
torch._foreach_add_(update, torch._foreach_mul(exp_avg_diffs, beta2 / bias_correction2))
torch._foreach_div_(update, denom)
if no_prox:
torch._foreach_mul_(params, 1 - lr * weight_decay)
torch._foreach_add_(params, update, alpha=-lr)
else:
torch._foreach_add_(params, update, alpha=-lr)
torch._foreach_div_(params, 1 + lr * weight_decay)
return copy_grads