Skip to content
forked from sail-sg/Adan

Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models

License

Notifications You must be signed in to change notification settings

huzuoliang/Adan

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models

This is an official PyTorch implementation of Adan. See paper here. If you find our adan helpful or heuristic to your projects, please cite this paper and also star this repository. Thanks!

@article{xie2022adan,
  title={Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models},
  author={Xie, Xingyu and Zhou, Pan and Li, Huan and Lin, Zhouchen and Yan, Shuicheng},
  journal={arXiv preprint arXiv:2208.06677},
  year={2022}
}

  • 🔥 🔥 Faster implementation are released.

  • Adan is supported in the lasted version of timm.

  • TF's implementation (third party) refers to DenisVorotyntsev/Adan.

  • JAX's version (third party) is implemented and also supported in Deepmind/optax.


Usage

For your convenience to use Adan, we briefly provide some intuitive instructions below, then provide some general experimental tips, and finally give more details (e.g. specific commonds and hyper-parameters) for each experiment in the paper.

1) Two steps to use Adan

Step 1. add Adan-dependent hyper-parameters by adding the following hyper-parameters to the config:

parser.add_argument('--max-grad-norm', type=float, default=0.0, help='if the l2 norm is large than this hyper-parameter, then we clip the gradient  (default: 0.0, no gradient clip)')
parser.add_argument('--weight-decay', type=float, default=0.02,  help='weight decay, similar one used in AdamW (default: 0.02)')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='optimizer epsilon to avoid the bad case where second-order moment is zero (default: None, use opt default 1e-8 in adan)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='optimizer betas in Adan (default: None, use opt default [0.98, 0.92, 0.99] in Adan)')
parser.add_argument('--no-prox', action='store_true', default=False, help='whether perform weight decay like AdamW (default=False)')

opt-betas In order to keep consistent with our usage habits, the $\beta$'s in the paper is actually the $(1-\beta)$'s in the code.

no-prox: It determines the update rule of parameters with weight decay. By default, Adan updates the parameters in the way presented in Algorithm 1 in the paper:

$$\boldsymbol{\theta}_{k+1} = ( 1+\lambda \eta)^{-1}\left[\boldsymbol{\theta}_k - \boldsymbol{\eta}_k \circ (\mathbf{m}_k+(1-{\color{blue}\beta_2})\mathbf{v}k)\right],$$

But one also can update the parameter like Adamw:

$$\boldsymbol{\theta}_{k+1} = ( 1-\lambda \eta)\boldsymbol{\theta}_k - \boldsymbol{\eta}_k \circ (\mathbf{m}_k+(1-{\color{blue}\beta_2})\mathbf{v}_k).$$ In all experiments, we set no-prox=False in our paper.

Step 2. creat the Adan optimizer as follows. In this step, we can directly replace the vanilla optimizer by using the following command:

from adan import Adan
optimizer = Adan(param, lr=args.lr, weight_decay=args.weight_decay, betas=args.opt_betas, eps = args.opt_eps, max_grad_norm=args.max_grad_norm, no_prox=args.no_prox)

2) Tips for Experiments

  • To make Adan simple, in all experiments except Table 12 in the paper, we do not use the restart strategy in Adan. But Table 12 shows that restart strategy can further slightly improve the performance of Adan.
  • Adan often allow one to use a large peak learning rate which often fails other optimizers, e.g. Adam and AdamW. For example, in all experiments except for the experiments on MAE pre-training and LSTM, the learning rate used by Adan is 5-10 times than that in Adam/AdamW.
  • For vision tasks, but not for NLP and RL tasks, it seems that Adan prefers a large batch size for large-scale experiments, e.g. 2,048 total batch size in our paper.
  • Adan is relatively robust to beta1, beta2 and beta3, especially for beta2. If you hope better performance, you can first tune beta3 and then beta1.
  • Interestingly, we found that weight_decay = 0.02 is suitable for all experiments in our paper.
  • In your training, if you already fully use the GPU memory when using other optimizers, then you may need to scale the batch size slightly smaller (accordingly linearly scaling LR, etc.) when using Adan, since Adan has slightly higher GPU memory cost than others.

3) More extra detailed steps to reproduce experimental results in paper

Please refer to the following links for detailed steps. In these detailed steps, we even include the docker images for reproducibility.

Model Zoo

Results on vision tasks

For your convenience to use Adan, we provide the configs and log files for the experiments on ImageNet-1k.

Model Epoch Training Setting Acc. (%) Config Batch Size Download
ViT-S 150 I 80.1 config 2048 log/model
ViT-S 150 II 79.6 config 2048 log/model
ViT-S 300 I 81.1 config 2048 log/model
ViT-S 300 II 80.7 config 2048 log/model
ViT-B 150 II 81.7 config 2048 log/model
ViT-B 300 II 82.6 config 2048 log/model
ResNet-50 100 I 78.1 config 2048 log/model
ResNet-50 200 I 79.7 config 2048 log/model
ResNet-50 300 I 80.2 config 2048 log/model
ResNet-101 100 I 80.0 config 2048 log/model
ResNet-101 200 I 81.6 config 2048 log/model
ResNet-101 300 I 81.9 config 2048 log/model
ConvNext-tiny 150 II 81.7 config 2048 log//model
ConvNext-tiny 300 II 82.4 config 2048 log/model
MAE-small 800+100 --- 83.8 config 4096/2048 log-pretrain/log-finetune/model
MAE-Large 800+50 --- 85.9 config 4096/2048 log-pretrain/log-finetune/model

Results on NLP tasks

BERT-base

We give the configs and log files of the BERT-base model pre-trained on the Bookcorpus and Wikipedia datasets and fine-tuned on GLUE tasks. Note, we provide the config and log file, and detailed instruction for BERT-base in the folder ./NLP/BERT.

Pretraining Config Batch Size Log Model
Adan config 256 log model
Fine-tuning on GLUE-Task Metric Result Config
CoLA Matthew's corr. 64.6 config
SST-2 Accuracy 93.2 config
STS-B Person corr. 89.3 config
QQP Accuracy 91.2 config
MNLI Matched acc./Mismatched acc. 85.7/85.6 config
QNLI Accuracy 91.3 config
RTE Accuracy 73.3 config

For fine-tuning on GLUE-Task, see the total batch size in their corresponding configure files.

Transformer-XL-base

We provide the config and log for Transformer-XL-base trained on the WikiText-103 dataset. The total batch size for this experiment is 60*4.

Steps Test PPL Download
Baseline (Adam) 200k 24.2 log&config
Transformer-XL-base 50k 26.2 log&config
Transformer-XL-base 100k 24.2 log&config
Transformer-XL-base 200k 23.5 log&config

About

Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Shell 0.4%