- Run train_parmas.py to train the data, transition and emition parameters will be stored in /params folder
- Run Part2.py to generate dev.p2.out for all language
- Run train_params.py ( if you already did this in part 2, no need to do it again, since it uses the same parameters for predictoin)
- Run Part3.py to generate dev.p3.out for all language
- Run train_params.py ( if you already did this in part 2 or 3, no need to do it again, since it uses the same parameters for predictoin)
- Run Part3.py to generate dev.p4.out for all language
Just run Part5_perceptron.py and test.p5.out will be generated for EN and ES
Ensure the parameter are:
ITER = 80
TOP_train = 1
TOP_predict = 1
CLEAN_DATA = False
For dev data, set TEST = False
For set data, set TEST = True
Detailed implementation can be found on https://github.com/hellozhanghao/ML_Project.git