Skip to content

Towards Federated Bayesian Network Structure Learning with Continuous Optimization

License

Notifications You must be signed in to change notification settings

ignavierng/notears-admm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Federated Structure Learning with Continuous Optimization

This repository contains an implementation of the structure learning methods described in "Towards Federated Bayesian Network Structure Learning with Continuous Optimization".

If you find it useful, please consider citing:

@inproceedings{Ng2022federated,
  author = {Ng, Ignavier and Zhang, Kun},
  title = {Towards Federated Bayesian Network Structure Learning with Continuous Optimization},
  booktitle = {International Conference on Artificial Intelligence and Statistics},
  year = {2022},
}

Requirements

  • Python 3.6+
  • numpy
  • scipy
  • python-igraph
  • torch

Running NOTEARS(-MLP) with ADMM

Acknowledgments

  • A large part of the code, including some helper functions, is obtained and modified from the implementation of NOTEARS, and we are grateful to the authors of NOTEARS for releasing their code.
  • The code to post-process the output is modified and obtained from the implementation of GOLEM.

About

Towards Federated Bayesian Network Structure Learning with Continuous Optimization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages