Skip to content

ihpdep/samf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration (SAMF)

This is the matlab code of SAMF[1]. It won the second place in VOT 2014. The implementation is built upon the code of [2]. The codes provided by [3,4,5] are also used in the implementation.

Instructions:

    1. Modify the base_path in "run_tracker.m" with your own setting.
    1. Run the "run_tracker.m" script in MATLAB.
    1. Choose sequence.

Contact:

Yang Li, liyang89@zju.edu.cn ihpdep.github.io

Jianke Zhu jkzhu@zju.edu.cn jkzhu.github.io

Our Lab website

Reference

[1] Yang Li, Jianke Zhu. "A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration" European Conference on Computer Vision, Workshop VOT2014 (ECCVW), 2014

[2] J. F. Henriques, R. Caseiro, P. Martins, J. Batista. "High-Speed Tracking with Kernelized Correlation Filters." TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015

[3] Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg and Joost van de Weijer. "Adaptive Color Attributes for Real-Time Visual Tracking". Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[4] J. van de Weijer, C. Schmid, J. J. Verbeek, and D. Larlus. "Learning color names for real-world applications." TIP, 18(7):1512–1524, 2009.

[5] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang. "Incremental Learning for Robust Visual Tracking" In the International Journal of Computer Vision, Special Issue: Learning for Vision, 2007.

Acknowledge:

Many thanks to Guy Koren and Jifeng Ning(宁纪锋) for helping me to find and fix bugs!

About

samf code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published