An autoML toolkit for QSAR Modelling for molecular properties.
conda env create -n maxqsaring python=3.8.8
conda activate maxqsaring
pip install -r requirements.txt
# Set local data dir:
export DATA_ROOT_DIR={your path of data}
- Training:
python main-v1.py train -tn {task_name} -s {scaffold, random-cv} -d tempdata
-
--task_name, -tn
: set task name, eg. herg, bbb_wang -
--split, -s
: set the split method, eg. random-cv, scaffold, default is scaffold -
--tmp_dir, -d
: set temp directory where the cache data is saved at. -
Evaluating:
python main-v1.py eval -tn {task_name} -d tempdata
-
--task_name, -tn
: set task name, eg. herg, bbb_wang -
--tmp_dir, -d
: set temp directory where the cache data is saved at. -
Predicting:
python main-v1.py predict -tn {task_name} -tf {test_path}
--task_name, -tn
: set task name, eg. herg, bbb_wang--test_file, -tf
: the test