Skip to content

Postgres database table partitioning support for Rails

License

Notifications You must be signed in to change notification settings

ilkerinanc/partitioned

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Partitioned
===========

Partitioned adds assistance to ActiveRecord for manipulating (reading,
creating, updating) an activerecord model that represents data that
may be in one of many database tables (determined by the Models data).

It also has features that support the creation and deleting of child
tables and partitioning support infrastructure.

It supports Postgres partitioning and has specific features to
overcome basic failings of Postgres's implementation of partitioning.

Basics:
A parent table can be inherited by many child tables that inherit most
of the attributes of the parent table including its columns.  child
tables typically (and for the uses of this plugin must) have a unique
check constraint the defines which data should be located in that
specific child table.

Such a constraint allows for the SQL planner to ignore most child
tables and target the (hopefully) one child table that contains the
records interested.  This splits data, and meta-data (indexes) which
provides streamlined targeted access to the desired data.

Support for bulk inserts and bulk updates is also provided via
Partitioned::Base.create_many and Partitioned::Base.update_many.

Example
=======

Given the following models:

  class Company < ActiveRecord::Base
  end

  class ByCompanyId < Partitioned::ByForeignKey
    self.abstract_class = true

    belongs_to :company

    def self.partition_foreign_key
      return :company_id
    end

    partitioned do |partition|
      partition.index :id, :unique => true
    end
  end

  class Employee < ByCompanyId
  end

and the following tables:

  -- this is the referenced table
  create table companies
  (
      id               serial not null primary key,
      created_at       timestamp not null default now(),
      updated_at       timestamp,
      name             text null
  );

  -- add some companies
  insert into table companies (name) values
    ('company 1'),('company 2'),('company 2');

  -- this is the parent table
  create table employees
  (
      id               serial not null primary key,
      created_at       timestamp not null default now(),
      updated_at       timestamp,
      name             text null,
      company_id       integer not null references companies
  );

We now need to create some infrastructure for partitioned tables,
in particular, we create a schema to hold the child partition
tables of employees.

  Employee.create_infrastructure

Which creates the employees_partitions schema using the following SQL:

  create schema employees_partitions;

NOTE: We also install protections on the employees table so it isn't
used as a data table (this SQL is not presented for simplicity but is
apart of the create_infrastructure call).

To add child tables we use the create_new_partitions_tables method:

  company_ids = Company.all.map(&:id)
  Employee.create_new_partition_tables(company_ids)

which results in the following SQL:

  create table employees_partitions.p1
    ( CHECK ( company_id = 1 ) ) INHERITS (employees);
  create table employees_partitions.p2
    ( CHECK ( company_id = 2 ) ) INHERITS (employees);
  create table employees_partitions.p3
    ( CHECK ( company_id = 3 ) ) INHERITS (employees);

NOTE: Some other SQL is generated in the above example, specifically
the reference to the companies table needs to be explicitly created
for postgres child tables AND the unique index on 'id' is created.
These are not shown for simplicity.

Now we can do operations involving the child partitions.

Since database records exist in a specific child table dependant on
the field "company_id" we need to have creates that turn into database
inserts of the EMPLOYEES table redirect the record insert into the
specific child table determined by the value of COMPANY_ID

eg:
  employee = Employee.create(:name => 'Keith', :company_id => 1)

this would normally produce the following:
  INSERT INTO employees ('name', company_id) values ('Keith', 1);

but with Partitioned we see:
  INSERT INTO employees_partitions.p1 ('name', company_id) values ('Keith', 1);

reads of such a table need some assistance to find the specific child
table the record exists in.

Since we are partitioned by company_id the programmer needs to provide
that information when fetching data, or the database will need to
search all child table for the specific record we are looking for.

This is no longer valid (well, doesn't perform well):

  employee = Employee.find(1)

instead, do one of the following:

  employee = Employee.from_partition(1).find(1)
  employee = Employee.find(:first,
                           :conditions => {:name => 'Keith', :company_id => 1})
  employee = Employee.find(:first,
                           :conditions => {:id => 1, :company_id => 1})

an update (employee.save where the record already exists in the
database) will take advantage of knowing which child table the record
exists in so it can do some optimization.

so, the following works as expected:

  employee.name = "Not Keith"
  employee.save

turns into the following SQL:

  update employees_partitions.p1 set name = 'Not Keith' where id = 1;

Copyright 2010-2012 fiksu.com, inc, all rights reserved

About

Postgres database table partitioning support for Rails

Resources

License

Stars

Watchers

Forks

Packages

No packages published