- Avro spec
- Avro schemas
- A more elaborated example with recursive schemas
- Avro serializer and deserializer
- Installation
- Running Integration Tests
avro-spec
empowers you to create Avro schemas and
serializers/deserializers with the specs from
json-values. Leveraging the simplicity,
intuitiveness, and composability of creating specs allows you to efficiently define Avro schemas.
The provided serializers/deserializers enable the transmission of the immutable and persistent JSON
from json-values through the wire in Avro format,
supporting Confluent Schema Registry.
Create Avro schemas in a natural way, for example, from the personSpec
:
JsSpec typeEmailSpec = JsEnumBuilder.withName("phone_type")
.withNamespace("example.com")
.build("MOBILE","FIXED");
JsSpec phoneSpec = JsObjSpecBuilder.withName("person_phone")
.withNamespace("example.com")
.build(JsObjSpec.of("number", JsSpecs.str(),
"type", typeEmailSpec
)
);
JsSpec emailSpec = JsObjSpecBuilder.withName("person_email")
.withNamespace("example.com")
.build(JsObjSpec.of("address", JsSpecs.str(),
"verified", JsSpecs.bool()
)
);
JsSpec contactSpec = JsSpecs.oneSpecOf(phoneSpec, emailSpec);
JsObjSpec personSpec =
JsObjSpecBuilder.withName("person")
.withNamespace("example.com")
.build(JsObjSpec.of("name", JsSpecs.str(),
"age", JsSpecs.integer(n -> n > 16),
"surname", JsSpecs.str(),
"contact", contactSpec
)
);
Schema schema = SpecToSchema.convert(personSpec);
System.out.println(schema);
Resulting Schema:
{
"type": "record",
"name": "person",
"namespace": "example.com",
"fields": [
{
"name": "name",
"type": "string"
},
{
"name": "age",
"type": "int"
},
{
"name": "surname",
"type": "string"
},
{
"name": "contact",
"type": [
{
"type": "record",
"name": "person_phone",
"fields": [
{
"name": "number",
"type": "string"
},
{
"name": "type",
"type": {
"type": "enum",
"name": "phone_type",
"symbols": ["MOBILE", "FIXED"]
}
}
]
},
{
"type": "record",
"name": "person_email",
"fields": [
{
"name": "address",
"type": "string"
},
{
"name": "verified",
"type": "boolean"
}
]
}
]
}
]
}
The json-values library simplifies the implementation of inheritance and the generation of structured data in JSON. Let's explore an example showcasing the ease of defining object specifications and its Avro schema, generating data, and validating against specifications.
In this example, picked from this article we model a hierarchy of devices, including mice, keyboards, and USB hubs. Each device type has specific attributes, and we use inheritance to share common fields across all device types.
String NAME_FIELD = "name";
String TYPE_FIELD = "type";
String BUTTON_COUNT_FIELD = "buttonCount";
String WHEEL_COUNT_FIELD = "wheelCount";
String TRACKING_TYPE_FIELD = "trackingType";
String KEY_COUNT_FIELD = "keyCount";
String MEDIA_BUTTONS_FIELD = "mediaButtons";
String CONNECTED_DEVICES_FIELD = "connectedDevices";
String PERIPHERAL_FIELD = "peripheral";
List<String> TRACKING_TYPE_ENUM = List.of("ball",
"optical");
JsObjSpec baseSpec =
JsObjSpec.of(NAME_FIELD,
JsSpecs.str()
);
JsObjSpec mouseSpec =
JsObjSpecBuilder.withName("mouse")
.build(JsObjSpec.of(BUTTON_COUNT_FIELD,
JsSpecs.integer(),
TYPE_FIELD,
JsSpecs.cons("mouse_type",
JsStr.of("mouse")),
WHEEL_COUNT_FIELD,
JsSpecs.integer(),
TRACKING_TYPE_FIELD,
JsEnumBuilder.withName("tracking_type")
.build(TRACKING_TYPE_ENUM)
)
.concat(baseSpec)
);
JsObjSpec keyboardSpec =
JsObjSpecBuilder.withName("keyboard")
.build(JsObjSpec.of(KEY_COUNT_FIELD,
JsSpecs.integer(),
TYPE_FIELD,
JsSpecs.cons("keyboard_type",
JsStr.of("keyboard")),
MEDIA_BUTTONS_FIELD,
JsSpecs.bool()
)
.concat(baseSpec)
);
JsObjSpec usbHubSpec =
JsObjSpecBuilder.withName("usb_hub")
.withFieldsDefaults(Map.of(CONNECTED_DEVICES_FIELD,
JsNull.NULL))
.build(JsObjSpec.of(TYPE_FIELD,
JsSpecs.cons("usb_hub_type",
JsStr.of("usb_hub")),
CONNECTED_DEVICES_FIELD,
JsSpecs.arrayOfSpec(JsSpecs.ofNamedSpec(PERIPHERAL_FIELD))
.nullable()
)
.withOptKeys(CONNECTED_DEVICES_FIELD)
.concat(baseSpec)
);
JsSpec peripheralSpec =
JsSpecs.ofNamedSpec(PERIPHERAL_FIELD,
JsSpecs.oneSpecOf(mouseSpec,
keyboardSpec,
usbHubSpec
)
);
Schema schema = SpecToAvroSchema.convert(peripheralSpec);
System.out.println(schema);
and the Avro schema would be:
[
{
"type": "record",
"name": "mouse",
"fields": [
{
"name": "wheelCount",
"type": "int"
},
{
"name": "name",
"type": "string"
},
{
"name": "buttonCount",
"type": "int"
},
{
"name": "type",
"type": {
"type": "enum",
"name": "mouse_type",
"symbols": ["mouse"]
}
},
{
"name": "trackingType",
"type": {
"type": "enum",
"name": "tracking_type",
"symbols": ["ball", "optical"]
}
}
]
},
{
"type": "record",
"name": "keyboard",
"fields": [
{
"name": "name",
"type": "string"
},
{
"name": "keyCount",
"type": "int"
},
{
"name": "mediaButtons",
"type": "boolean"
},
{
"name": "type",
"type": {
"type": "enum",
"name": "keyboard_type",
"symbols": ["keyboard"]
}
}
]
},
{
"type": "record",
"name": "usb_hub",
"fields": [
{
"name": "type",
"type": {
"type": "enum",
"name": "usb_hub_type",
"symbols": ["usb_hub"]
}
},
{
"name": "name",
"type": "string"
},
{
"name": "connectedDevices",
"type": [
"null",
{
"type": "array",
"items": ["mouse", "keyboard", "usb_hub"]
}
],
"default": null
}
]
}
]
Table 1: Avro Type Mappings
Avro Type | json-values | Avro class |
---|---|---|
null | JsNull.Null | null |
boolean | JsBool | java.lang.Boolean |
int | JsInt | java.lang.Integer |
long | JsLong | java.lang.Long |
float | JsDouble | java.lang.Float |
double | JsDouble | java.lang.Double |
bytes | JsBinary | java.nio.HeapByteBuffer |
string | JsStr | java.lang.String |
record | JsObj | org.apache.avro.generic.GenericData$Record |
enum | JsStr | org.apache.avro.generic.GenericData$EnumSymbol |
array | JsArray | org.apache.avro.generic.GenericData$Array |
map | JsObj | java.util.HashMap |
fixed | JsBinary | org.apache.avro.generic.GenericData$Fixed |
avro-spec defines the following logical types to serialize and deserialize big integers represented
with JsBigDec
, big decimal represented with JsBigInt
, and instants represented with JsInstant
:
Avro Type | Logical Type | json-values Type | Avro class |
---|---|---|---|
string | bigdecimal | JsBigDec | java.lang.String |
string | biginteger | JsBigInt | java.lang.String |
string | iso-8601 | JsInstant | java.lang.String |
Let's see how to do conversions between json-values and Avro objects.
From JSON to Avro using specs
JsObj obj = ???;
JsSpec objSpec = ???;
GenericData.Record record = JsonToAvro.convert(obj, objSpec);
JsArray array = ???;
JsSpec arrSpec = ???;
GenericData.Array<Object> = JsonToAvro.convert(array, arrSpec);
Json<?> json = ???;
JsSpec jsonSpec = ???;
GenericContainer container = JsonToAvro.convert(json, jsonSpec);
From JSON to Avro using Avro schemas
JsObj obj = ???;
Schema objSchema = ???;
GenericData.Record record = JsonToAvro.convert(obj, objSchema);
JsArray array = ???;
Schema arrSchema = ???;
GenericData.Array<Object> = JsonToAvro.convert(array, arrSchema);
Json<?> json = ???;
JsSpec jsonSpec = ???;
GenericContainer container = JsonToAvro.convert(json, jsonSpec);
JsValue value = ???;
Schema valueSchema = ???;
Object object = JsonToAvro.convertValue(value, valueSchema);
And from JSON to Avro:
GenericData.Record record = ???;
JsObj obj = AvroToJson.convert(record);
GenericData.Array<Object> avroArr = ???;
JsArray arr = AvroToJson.convert(avroArr);
Object avroObj = ???;
Schema avroObjSchema = ???;
JsValue value = AvroToJson.convert(avroObj, avroObjSchema);
Map<?, ?> map = ???;
Schema mapSchema = ???;
JsObj mapObj = AvroToJson.convert(map, mapSchema);
Avro serializers and deserializers play a crucial role in efficiently encoding and decoding data for communication between Kafka producers and consumers. Here, we explore different options available for serialization and deserialization with Avro, including integration with the Confluent Schema Registry.
-
Confluent Avro Serializers with Schema Registry Integration
jsonvalues.spec.serializers.confluent.ConfluentSerializer
: Serializes Avro generic containers of typeorg.apache.avro.generic.GenericContainer
into bytes.jsonvalues.spec.serializers.confluent.ConfluentSpecSerializer
: Serializes a JSON object conforming to a spec into bytes.
-
Avro serializers:
jsonvalues.spec.serializers.SpecSerializer
: Serializes a JSON object conforming to a spec into bytes.
And the following deserializers:
-
Confluent Avro Deserializers with Schema Registry Integration
jsonvalues.spec.deserializers.confluent.ConfluentObjDeserializer
: Deserializes bytes into a JsObj.jsonvalues.spec.deserializers.confluent.ConfluentArrayDeserializer
: Deserializes bytes into a JsArray.jsonvalues.spec.deserializers.confluent.ConfluentDeserializer
: Deserializes bytes into a JSON object.jsonvalues.spec.deserializers.confluent.ConfluentObjSpecDeserializer
: Deserializes bytes into a JsObj conforming to a spec.jsonvalues.spec.deserializers.confluent.ConfluentArraySpecDeserializer
: Deserializes bytes into a JsArray conforming to a spec.
-
Avro deserializers:
jsonvalues.spec.deserializers.ObjSpecDeserializer
: Deserializes bytes into a JsObj conforming to a spec.jsonvalues.spec.deserializers.ArraySpecDeserializer
: Deserializes bytes into a JsArray conforming to a spec.
Which serializer to use?
Let's consider the following example where we have a topic named "payments":
String TOPIC = "payments";
JsObjSpec paymentSpec =
JsObjSpecBuilder.withName("Payment")
.withNamespace("examples.avro.spec")
.build(JsObjSpec.of("id", JsSpecs.str(),
"amount", JsSpecs.doubleNumber()
)
);
//Let's create a generator for payments
Supplier<JsObj> paymentGen =
JsObjGen.of("id", JsStrGen.alphabetic(),
"amount", JsDoubleGen.arbitrary(100.0d,1000d)
)
.sample();
When working with Kafka, using a single producer for all topics is highly recommended for optimal performance due to its thread safety and batching capabilities. Given that, you have two options:
jsonvalues.spec.confluent.ConfluentSerializer
for Avro Format with Schema Registry Integration:
private static KafkaProducer<String, GenericRecord> createProducer() {
Properties props = new Properties();
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ConfluentSerializer.class);
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaProducer<>(props);
}
int RECORDS = 10;
try (var producer = createProducer()) {
for (long i = 0; i < RECORDS; i++)
{
JsObj payment = paymentGen.get();
GenericRecord record = JsonToAvro.convert(payment,paymentSpec)
ProducerRecord<String, GenericRecord> record =
new ProducerRecord<>(TOPIC,
payment.getStr("id") + i,
record);
producer.send(record);
Thread.sleep(1000L);
}
producer.flush();
System.out.printf("Successfully produced 10 messages to a topic called %s%n",
TOPIC
);
}
In the first case, we're using jsonvalues.spec.confluent.ConfluentSerializer
as the value
serializer for the producer. Before sending the data to the Kafka topic, we need to convert the JSON
object (payment
) into the Avro object GenericRecord
using
JsonToAvro.convert(payment, paymentSpec)
.
jsonvalues.spec.serializers.SpecSerializer
for Avro Format without Schema Registry integration:
private static KafkaProducer<String, byte[]> createProducer() {
Properties props = new Properties();
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class);
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaProducer<>(props);
}
JsSpecSerializer paymentSerializer =
JsSpecSerializerBuilder.of(paymentSpec)
.build();
int RECORDS = 10;
try (var producer = createProducer()) {
for (long i = 0; i < RECORDS; i++)
{
JsObj payment = paymentGen.get();
ProducerRecord<String, byte[]> record =
new ProducerRecord<>(TOPIC,
payment.getStr("id") + i,
paymentSerializer.serialize(payment));
producer.send(record);
Thread.sleep(1000L);
}
producer.flush();
System.out.printf("Successfully produced 10 messages to a topic called %s%n",
TOPIC);
}
In this second case, we're utilizing org.apache.kafka.common.serialization.ByteArraySerializer
from Kafka as the value serializer for the producer. Additionally, we're employing the created
paymentSerializer to convert the JSON object into bytes in avro format before sending it to the
Kafka topic.
If you have one specific producer for a topic, because the topic requires a specific configuration:
jsonvalues.spec.serializers.confluent.ConfluentSpecSerializer
for Avro format and integration with Confluent Schema Registry In this case you need to create a new class and extendJsSpecSerializer
providing the spec. Find below and example:
public final class PaymentSerializer extends ConfluentSpecSerializer {
@Override
protected boolean isJFREnabled() {
return true;
}
@Override
protected JsSpec getSpec() {
return paymentSpec;
}
}
private static KafkaProducer<String, JsObj> createPaymentProducer() {
Properties props = new Properties();
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
PaymentSerializer.class);
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaProducer<>(props);
}
try (var producer = createPaymentProducer()) {
for (long i = 0; i < RECORDS; i++)
{
JsObj payment = gen.get();
ProducerRecord<String, JsObj> record =
new ProducerRecord<>(TOPIC,
payment.getStr("id") + i,
payment);
producer.send(record);
Thread.sleep(1000L);
}
producer.flush();
System.out.printf("Successfully produced 10 messages to a topic called %s%n",
TOPIC);
}
In this setup, you create a new class PaymentSerializer
by extending ConfluentSpecSerializer
,
where you override the getSpec()
method to provide the necessary spec (paymentSpec
). Then, when
creating the Kafka producer (createPaymentProducer()
), you specify PaymentSerializer.class
as
the value serializer to use for serialization. This serializer will automatically handle the
serialization process when you pass a JsObj
to the producer, simplifying the process for you.
jsonvalues.spec.serializers.SpecSerializer
for Avro format without Schema registry. In this case, we use theorg.apache.kafka.common.serialization.ByteArraySerializer
from Kafka as the value serializer for the producer. Additionally, we employ theJsSpecSerializer
created using a builder to convert JSON objects into bytes in Avro format before sending them to the Kafka topic.
private static KafkaProducer<String, byte[]> createProducer() {
Properties props = new Properties();
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class);
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaProducer<>(props);
}
SpecSerializer paymentSerializer =
SpecSerializerBuilder.of(Specs.paymentSpec)
.build();
int RECORDS = 10;
try (var producer = createProducer())
{
for (long i = 0; i < RECORDS; i++) {
JsObj payment = paymentGen.get();
ProducerRecord<String, byte[]> record =
new ProducerRecord<>(TOPIC,
payment.getStr("id") + i,
paymentSerializer.serialize(payment));
producer.send(record);
Thread.sleep(1000L);
}
producer.flush();
System.out.printf("Successfully produced 10 messages to a topic called %s%n",
TOPIC);
}
What about deserializers?
- If you opt for the Confluent serializer, you have several deserialization options integrated with the Confluent Schema Registry:
jsonvalues.spec.confluent.ConfluentObjDeserializer
: Deserializes into a JsObj.jsonvalues.spec.confluent.ConfluentArrayDeserializer
: Deserializes into a JsArray.jsonvalues.spec.confluent.ConfluentDeserializer
: Deserializes into a Json (can be either a JsObj or a JsArray).- You can also create custom deserializers by extending
jsonvalues.spec.confluent.ConfluentObjSpecDeserializer
orjsonvalues.spec.confluent.ConfluentArraySpecDeserializer
to ensure deserialized data conforms to a specific schema.
Example using ConfluentObjDeserializer
:
private static KafkaConsumer<String, JsObj> createPaymentDeserializer() {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(ConsumerConfig.GROUP_ID_CONFIG,
"my-consumer-group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
jsonvalues.spec.confluent.ConfluentObjDeserializer.class);
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaConsumer<>(props);
}
try (var consumer = createConsumerWithJsonObjDeserializer()) {
consumer.subscribe(List.of(TOPIC));
while (true) {
ConsumerRecords<String, JsObj> records = consumer.poll(Duration.ofMillis(500));
System.out.println("Consumed " + records.count() + " records.");
for (var record : records) {
JsObj obj = record.value();
System.out.printf("offset = %d, key = %s, value = %s%n",
record.offset(),
record.key(),
obj
);
}
}
}
Example using a spec deserializer:
//must create a new deserializer extending ConfluentObjSpecDeserializer
public final class PaymentDeserializer extends ConfluentObjSpecDeserializer {
@Override
protected JsSpec getSpec() {
return paymentSpec;
}
@Override
protected boolean isJFREnabled() {
return true;
}
}
private static KafkaConsumer<String, JsObj> createPaymentDeserializer() {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(ConsumerConfig.GROUP_ID_CONFIG,
"my-consumer-group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
PaymentDeserializer.class);
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaConsumer<>(props);
}
// same code as before
In this second example, it's important to note that every deserialized object adheres to the payment specification; otherwise, the deserialization process would not succeed.
- If you're using the serializer without Schema Registry integration, you can employ the builders
jsonvalues.spec.deserializers.ObjSpecDeserializerBuilder
andjsonvalues.spec.deserializers.ArraySpecDeserializerBuilder
to construct deserializers from specifications. These builders facilitate the creation of custom deserializers tailored to your specific data schemas.
Below is an example demonstrating the usage of a ByteArrayDeserializer
from Kafka along with a
spec deserializer to convert bytes into a JsObj and consume a Kafka topic:
private static KafkaConsumer<String, Bytes> createConsumer() {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:29092");
props.put(ConsumerConfig.GROUP_ID_CONFIG,
"group-json-deserializer-1");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
BytesDeserializer.class);
props.put(SCHEMA_REGISTRY_URL_CONFIG,
"http://localhost:8081");
return new KafkaConsumer<>(props);
}
ObjSpecDeserializer paymentDeserializer =
ObjSpecDeserializerBuilder.of(paymentSpec)
.build();
try (var consumer = createConsumer()) {
consumer.subscribe(List.of(TOPIC));
while (true) {
ConsumerRecords<String, JsObj> records = consumer.poll(Duration.ofMillis(500));
System.out.println("Consumed " + records.count() + " records.");
for (var record : records) {
Bytes kakfaBytes = record.value();
byte[] bytes = kakfaBytes.get();
JsObj obj = paymentDeserializer.deserialize(bytes);
System.out.printf("offset = %d, key = %s, value = %s%n",
record.offset(),
record.key(),
obj
);
}
}
}
Monitoring Serializers/Deserializers with JFR Events
All the serializers and deserializers in this library support Java Flight Recorder (JFR) events. The different events are:
ConfluentSerializerEvent
ConfluentDeserializerEvent
SerializerEvent
DeserializerEvent
There are four predefined formatters, which are functions that format the events into a string. Consider the following example to log some events using a JFR stream:
RecordingStream rs = new RecordingStream();
rs.setOrdered(true);
String eventName = "Confluent_Avro_Serializer_Event";
rs.onEvent(eventName,
recordedEvent -> logger.info(ConfluentSerializerEventFormatter.apply(recordedEvent))
);
rs.onEvent(eventName,
recordedEvent -> logger.info(ConfluentDeserializerEventFormatter.apply(recordedEvent))
);
rs.startAsync();
If you are using jio-test, create a debugger in your test specifying the stream duration, and you will see the events printed out on the console
@RegisterExtension
static Debugger debugger = Debugger.of(Duration.ofSeconds(5));
To include avro-spec in your project, add the corresponding dependency to your build tool based on your Java version:
<dependency>
<groupId>com.github.imrafaelmerino</groupId>
<artifactId>avro-spec</artifactId>
<version>1.0.0</version>
</dependency>
Requires Java 21 or higher
Before executing the integration tests, ensure that Kafka is up and running, a topic is created, and
an Avro schema is associated with the topic's values. To do this, follow the steps below, using the
provided docker-compose.yml
file to start the Confluent platform:
cd src/test/resources
docker-compose up
SCHEMA_REGISTRY_HOST="localhost"
SCHEMA_REGISTRY_PORT="8081"
REST_PROXY_PORT="8082"
REST_PROXY_HOST="localhost"
TOPIC_NAME="transactions"
CLUSTER_ID=$(curl -s -X GET -H "Accept: application/json" "http://${REST_PROXY_HOST}:${REST_PROXY_PORT}/v3/clusters" | jq -r '.data[0].cluster_id')
echo $CLUSTER_ID
curl -X POST \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
--data '{
"topic_name": "'${TOPIC_NAME}'",
"partitions_count": 1,
"replication_factor": 1
}' \
"http://${REST_PROXY_HOST}:${REST_PROXY_PORT}/v3/clusters/${CLUSTER_ID}/topics"
curl -X POST \
-H "Content-Type: application/vnd.schemaregistry.v1+json" \
--data @payment-schema.json \
"http://${SCHEMA_REGISTRY_HOST}:${SCHEMA_REGISTRY_PORT}/subjects/${TOPIC_NAME}-value/versions"
You can verify that everything is working correctly by visiting the Control Center at http://localhost:9021/clusters.
Once Kafka is running, the topic is created, and the schema is registered, you're ready to run your integration tests.
To run the tests, use one of the following Maven commands:
mvn failsafe:integration-test
— To run integration tests only.mvn verify
— To run both unit and integration tests.