- vertx-effect manifesto
- How persistent data structures makes a difference working with actors
- vertx-effect in a few lines of code
- Effects
- Expressions
- Being reactive
- Modules
- Logging
- Spawning verticles
- Http client
- Oauth Http client
- Http server
- Testing
- Requirements
- Installation
- Related projects
. The more verticles, the better.
. A verticle must do only one thing.
. Use persistent data structures.
. Systems will fail, be prepared.
. Simplicity matters.
. If there is a bug and you can't spot it quickly, then there are two bugs. Fix both of them.
Vertx-effect embraces immutability and persistent data structures. That's why it uses vertx-values instead of the default Vert.x Json which is very inefficient.
public class MyModule extends VertxModule {
public static Lambda<String, String> toLowerCase, toUpperCase;
public static Lambda<Integer, Integer> inc;
public static Lambda<JsObj, JsObj> validate, validateAndMap;
@Override
protected void deploy() {
this.deploy("toLowerCase",
(String str) -> VIO.succeed(str.toLowerCase())
);
this.deploy("toUpperCase",
(String str) -> VIO.succeed(str.toUpperCase())
);
this.deploy("inc",
(Integer n) -> VIO.succeed(n + 1)
);
// json-values uses specs to define the structure of a Json: {a:int,b:[str,str]}
JsObjSpec spec = JsObjSpec.of("a", integer(),
"b", tuple(str(), str())
);
this.deploy("validate", Validators.validateJsObj(spec));
Lambda<JsObj, JsObj> map = obj ->
JsObjExp.par("a",
inc.apply(obj.getInt("a"))
.map(JsInt::of),
"b",
JsArrayExp.par(toLowerCase.apply(obj.getStr(path("/b/0")))
.map(JsStr::of),
toUpperCase.apply(obj.getStr(path("/b/1")))
.map(JsStr::of)
)
)
.retry(RetryPolicies.limitRetries(2));
this.deploy("validateAnMap",
(JsObj obj) -> validate.apply(obj).then(map)
);
}
@Override
protected void initialize() {
toUpperCase = this.ask("toUpperCase");
toLowerCase = this.ask("toLowerCase");
inc = this.ask("inc");
validate = this.ask("validate");
validateAndMap = this.ask("validateAnMap");
}
}
A module is a regular verticle that deploys other verticles and exposes lambdas to communicate
with them. A lambda is just a function that takes an input and produces an output. In the above
example, MyModule
deploys five verticles. It's worth mentioning how the verticle ValidateAndMap
is defined using composition and the expressions JsObjExp
and JsArrayExp
. It shows the essence
and the goal of vertx-effect. Later on, we'll see more expressions like CondExp
, SwitchExp
,
IfElseExp
, AllExp
, AnyExp
, PairExp
, TripleExp
, ListExp
, MapExp
etc.
ValidateAndMap
sends a message to validate
. If the message matches the given spec,
ValidateAndMap
computes the output sending messages to the verticles inc
, toLowerCase
, and
toUpperCase
and composing a Json from their responses in parallel. You can operate sequentially
instead of in parallel using the constructors JsObjExp.seq
and JsArrayExp.sequential
. Thanks to
the retry
function, if any
verticle failed to compute their value, it would retry the
computation up to two times.
It's important to notice that you can still send messages to the module verticles using the Vertx API, but one of the points of vertx-effect is to use functions for that.
Let's write some tests. Vertx doesn't support json-values, so we need to register a MessageCodec
to send its persistent Json across the event bus.
import io.vertx.core.Vertx;
import io.vertx.junit5.*;
import org.junit.jupiter.api.*;
import org.junit.jupiter.api.extension.ExtendWith;
import jsonvalues.JsArray;
import jsonvalues.JsInt;
import jsonvalues.JsObj;
import vertx.effect.PairExp;
import vertx.effect.VertxRef;
import vertx.values.codecs.RegisterJsValuesCodecs;
@ExtendWith(VertxExtension.class)
public class TestMyModule {
@BeforeAll
// register a MessageCodec for json-values and deploy MyModule
public static void prepare(final Vertx vertx,
final VertxTestContext context
) {
VertxRef ref = new VertxRef(vertx);
PairExp.seq(ref.deployVerticle(new RegisterJsValuesCodecs()),
ref.deployVerticle(new MyModule())
)
.onSuccess(ids -> context.completeNow())
.get();
}
@Test
public void empty_json_is_sent_and_failure_is_received(VertxTestContext context) {
MyModule.validateAndMap.apply(JsObj.EMPTY)
.onComplete(result ->
context.verify(() -> {
Assertions.assertTrue(result.failed());
System.out.println(result.cause());
context.completeNow();
})
)
.get();
}
@Test
public void valid_json_is_sent_and_is_mapped_successfully(VertxTestContext context) {
JsObj input = JsObj.of("a", JsInt.of(1), "b", JsArray.of("FOO", "foo"));
JsObj expected = JsObj.of("a", JsInt.of(2), "b", JsArray.of("foo", "FOO"));
MyModule.validateAndMap.apply(input)
.onSuccess(output -> {
context.verify(() -> {
Assertions.assertEquals(expected, output);
context.completeNow();
});
})
.get();
}
}
Lambdas are just functions, so you can test them without deploying any verticle!
Lambda<String, String> toLowerCase = str -> VIO.succeed(str.toLowerCase());
Lambda<String, String> toUpperCase = str -> VIO.succeed(str.toUpperCase());
Lambda<Integer, Integer> inc = n -> VIO.succeed(n+1);
JsObjSpec spec = JsObjSpec.of("a", integer(), "b", tuple(str(), str()));
Lambda<JsObj, JsObj> validate = Validators.validateJsObj(spec);
Lambda<JsObj, JsObj> map = obj->
JsObjExp.par("a", inc.apply(obj.getInt("a")).map(JsInt::of),
"b", JsArrayExp.par(toLowerCase.apply(obj.getStr(path("/b/0"))).map(JsStr::of),
toUpperCase.apply(obj.getStr(path("/b/1"))).map(JsStr::of)
)
);
@Test
public void valid_json_is_validated_and_mapped(VertxTestContext context) {
JsObj input = JsObj.of("a", JsInt.of(1), "b", JsArray.of("FOO","foo"));
JsObj expected = JsObj.of("a", JsInt.of(2), "b", JsArray.of("foo","FOO"));
validate.then(map)
.apply(input).get()
.onComplete(result->{
context.verify(
() -> Assertions.assertTrue(result.succeeded() && result.result().equals(expected))
);
context.completeNow();
});
}
This is extremely convenient and productive to do your testing. You don't need to mock anything. Passing around functions that produce outputs given some inputs is enough to check that your verticles will do their job.
The takeaway from this section is how using function composition and different expressions, you'll be able to handle complexity and implement and test any imaginable flow very quickly.
Functional Programming is all about working with pure functions and values. That's all. One of the points where FP especially shines is dealing with effects. An effect is something you can't call twice unless you intended to:
Future<Customer> a = insertDb(customer);
Future<Customer> b = insertDb(customer);
Both calls can fail, or they can create two different customers, or one of them can fail, who knows. That code is not referentially transparent. For obvious reasons, you can't do the following refactoring:
Future<Customer> c = insertDb(customer)
Future<Customer> a = c;
Future<Customer> b = c;
A Vertx future represents an asynchronous effect. We don't want to block the event loop because of the latency of a computation. Haskell has proven to us how laziness is an essential property to stay pure. We need to define an immutable and lazy data structure that allows us to control the effect of latency.
Since Java 8, we have suppliers. They are indispensable to do FP in Java. Let's start defining what an effect is in vertx-effect:
import java.util.function.Supplier
import io.vertx.core.Future
public abstract class VIO<O> extends Supplier<Future<O>> {
//from a constant
public static VIO<O> succeed(O constant);
//from a exception
public static VIO<O> fail(Throwable error);
// from an effect
public static VIO<O> effect(Supplier<Future<O>> effect);
}
A VIO of type O is a supplier that will return a Vertx future of type O. It describes (and not execute) an asynchronous effect that will compute a value of type O.
If we turn Future into VIO in the previous example:
VIO<Customer> a = VIO.effect( () -> insertDb(customer) );
VIO<Customer> b = VIO.effect( () -> insertDb(customer) );
The above example is entirely equivalent to:
VIO<Customer> c = VIO.effect( ()->insertDb(customer) );
VIO<Customer> a = c;
VIO<Customer> b = c;
This property is fundamental. Whenever you see the expression insertDb(customer)
in your program,
you can think of it as it was c. Pure FP programming helps us reason about the programs we write.
VIO is lazy. It's a description of an effect. In FP, we describe programs, and it's at the very
last moment when they're executed.
I always wanted to name Lambda to something, and I finally got the chance!
import java.util.function.Function
public interface Lambda<I,O> extends Function<I, VIO<O>> { }
A lambda is a function that returns a VIO of type O given a type I. It models the communication with a verticle: a message is sent, the verticle receives and processes the message, and replies with a response. The message and the answer have to be of a type that can be sent across the event bus; otherwise, you must implement a MessageCodec.
Using expressions and function composition is how we deal with complexity in functional programming. Let's go over the essential expressions in vertx-effect:
- VIO constructors
VIO<String> str = VIO.succeed("hi");
VIO<Throwable> error = VIO.fail(new RuntimeException("something went wrong :("));
Future<JsObj> getProfile(final String id){...}
VIO<JsObj> profile = VIO.effect( () -> getProfile(id));
VIO<Long> realTime = VIO.effect(() -> System.currentTimeMillis() );
- IfElseExp. If the condition is evaluated to true, it computes and returns the consequence; otherwise, the alternative.
import jio.IfElseExp;
VIO<O> exp = IfElseExp.<O>predicate(VIO<Boolean> condition)
.consequence(Supplier<VIO<O>> consequence)
.alternative(Supplier<VIO<O>> alternative);
VIO<O> exp = IfElseExp.<O>predicate(boolean condition)
.consequence(Supplier<VIO<O>> consequence)
.alternative(Supplier<VIO<O>> alternative);
The alternative and the consequence are lazy computations of IO effects.
- SwitchExp. The switch construct implements multiple pattern-value branches. It evaluates an effect or value of type I and allows multiple clauses based on evaluating that value.
// matches a value of type I
VIO<O> exp =
SwitchExp<I,O>.match(I value)
.patterns(I pattern1, Lambda<I,O> lambda1,
I pattern2, Lambda<I,O> lambda2,
I pattern3, Lambda<I,O> lambda3,
Lambda<I,O> otherwise
);
// matches an effect of type I
VIO<O> exp =
SwitchExp<I,O>.match(VIO<I> value)
.patterns(I pattern1, Lambda<I,O> lambda1,
I pattern2, Lambda<I,O> lambda2,
I pattern3, Lambda<I,O> lambda3,
Lambda<I,O> otherwise
);
// For example, the following expression reduces to "Wednesday"
VIO<O> exp =
SwitchExp<Integer,String>.match(3)
.patterns(1, _ -> VIO.succeed("Monday"),
2, _ -> VIO.succeed("Tuesday"),
3, _ -> VIO.succeed("Wednesday"),
4, _ -> VIO.succeed("Thursday"),
5, _ -> VIO.succeed("Friday"),
_ -> VIO.succeed("weekend")
);
The same as before but using lists instead of constants as patterns.
VIO<O> exp = SwitchExp<I,O>.match(I value)
.patterns(List<I> pattern1, Lambda<I,O> lambda1,
List<I> pattern2, Lambda<I,O> lambda2,
List<I> pattern3, Lambda<I,O> lambda3,
Lambda<I,O> otherwise
);
// For example, the following expression reduces to "third week"
VIO<O> exp =
SwitchExp<Integer,String>.match(20)
.patterns(List.of(1, 2, 3, 4, 5, 6, 7), _ -> VIO.succeed("first week"),
List.of(8, 9, 10, 11, 12, 13, 14), _ -> VIO.succeed("second week"),
List.of(15, 16, 17, 18, 19, 20, 10), _ -> VIO.succeed("third week"),
List.of(21, 12, 23, 24, 25, 26, 27), _ -> VIO.succeed("forth week"),
_ -> VIO.succeed("last days of the month")
);
Last but not least, you can use predicates as patterns instead of values or list of values:
VIO<O> exp =
SwitchExp<I,O>.match(VIO<I> value)
.patterns(Predicate<I> pattern1, Lambda<I,O> lambda1,
Predicate<I> pattern2, Lambda<I,O> lambda2,
Predicate<I> pattern3, Lambda<I,O> lambda3,
Lambda<I,O> otherwise
);
// For example, the following expression reduces to the default value, "greater or equal to twenty"
VIO<O> exp =
SwitchExp<Integer,String>.match(IO.succeed(20))
.patterns(i -> i < 5 , _ -> VIO.succeed("lower than five"),
i -> i < 10 , _ -> VIO.succeed("lower than ten"),
i -> i < 20 , _ -> VIO.succeed("lower than twenty"),
_ -> VIO.succeed("greater or equal to twenty")
);
- CondExp. It's a set of branches, and a default value. Each branch consists of an effect that computes a boolean (the condition) and its associated effect. The effect is computed and the expression reduced to its value if its condition is the first one in the list to be true. This means the order you place branches matters. If no condition is true, it computes the default effect, which is the last clause. You can compute all the conditions values either in parallel or sequentially.
VIO<O> exp = CondExp.<O>seq(VIO<Boolean> cond1, Supplier<VIO<O>> effect1,
VIO<Boolean> cond2, Supplier<VIO<O>> effect2,
VIO<Boolean> cond3, Supplier<VIO<O>> effect3,
Supplier<VIO<O>> otherwise
);
VIO<O> exp = CondExp.<O>par(VIO<Boolean> cond1, Supplier<VIO<O>> effect1,
VIO<Boolean> cond2, Supplier<VIO<O>> effect2,
VIO<Boolean> cond3, Supplier<VIO<O>> effect3,
Supplier<VIO<O>> otherwise
);
AllExp
andAnyExp
. They are just idiomatic names for the boolean expressions And and Or. You can compute all the boolean effects either in parallel or sequentially.
VIO<Boolean> all = AllExp.par(VIO<Boolean> cond1, VIO<Boolean> cond2, ....);
VIO<Boolean> all = AllExp.seq(VIO<Boolean> cond1, VIO<Boolean> cond2, ....);
VIO<Boolean> any = AnyExp.par(VIO<Boolean> cond1, VIO<Boolean> cond2, ...);
VIO<Boolean> any = AnyExp.seq(VIO<Boolean> cond1, VIO<Boolean> cond2, ...);
- PairExp. A pair is a tuple of two elements. Each element can be computed either in parallel or sequentially.
VIO<Pair<A,B> pair = PairExp.par(VIO<A> val1, VIO<B> val2);
VIO<Pair<A,B> pair = PairExp.seq(VIO<A> val1, VIO<B> val2);
You can race pairs when A and B have the same type, returning the first value that is computed:
VIO<Pair<A,A> pair = PairExp.par(VIO<A> val1, VIO<A> val2);
VIO<A> thefastest = PairExp.race(par);
- TripleExp. A triple is a tuple of three elements. Each element can be computed either in parallel or sequentially.
VIO<Triple<A,B,C> triple = TripleExp.par(VIO<A> val1, VIO<B> val2, VIO<C> val3);
VIO<Triple<A,B,C> triple = TripleExp.seq(VIO<A> val1, VIO<B> val2, VIO<C> val3);
You can also race triples.
- JsObjExp and JsArrayExp.
JsObjExp
and JsArrayExp
are data structures that look like raw Json. You can compute all the
values either in parallel or sequentially. You can mix all the expressions we've seen so far and
nest them, going as deep as necessary, like in the following example:
IfElseExp<JsStr> a = IfElseExp.<JsStr>predicate(VIO<Boolean> condition)
.consequence(VIO<JsStr> consequence)
.alternative(VIO<JsStr> alternative);
JsArrayExp b =
JsArrayExp.seq(SwitchExp<Integer,JsValue>.match(n)
.patthers(1, Lambda<Insteger,JsValue> lambda1,
2, Lambda<Insteger,JsValue> lambda2,
Lambda<Insteger,JsValue> defaultLambda
),
CondExp.par(VIO<Boolean> cond1, Supplier<IO<JsValue>> effect1,
VIO<Boolean> cond2, Supplier<IO<JsValue>> effect2,
Supplier<IO<JsValue>> defaultValue
)
);
JsObjExp c =
JsObjExp.par("d", AnyExp.seq(VIO<Boolean> cond3, VIO<Boolean> cond4)
.map(JsBool::of),
"e", AllExp.par(VIO<Boolean> cond5, VIO<Boolean> cond6)
.map(JsBool::of),
"f", JsArrayExp.par(VIO<JsValue> value1, VIO<JsValue> value2)
)
JsObjExp exp = JsObjExp.par("a", a,
"b", b,
"c", c
);
JsObj json = exp.result();
It's important to notice that any value of the above expressions can be computed by different verticles deployed on different machine's of a cluster. Imagine ten machines collaborating to compute a JsObj. Isn't this amazing?
- ListExp and MapExp
They represent sequences and maps. Modules use them internally. For example, the deploy
method
uses a MapExp to put the deployed verticles using their addresses as keys. They also use a ListExp
when more than a verticle instance is deployed. As with the other expressions, you can compute their
values either in parallel or sequentially.
MapExp<String> map = MapExp.par("a", VIO<String> value1,
"b", VIO<String> value2,
"c", VIO<String> value3
);
ListExp<Integer> seq = ListExp.par(VIO<Integer>, VIO<Integer>);
VIO<Integer> firstFinishing = seq.race();
The race
function returns the value that finishes first. You can race a JsArrayExp
as well.
Find below some of the most critical operations defined in the Val
interface that will help us
make our code more resilient:
import vertx.effect.RetryPolicy;
public interface VIO<O> extends Supplier<Future<O>> {
VIO<O> retry(RetryPolicy policy);
VIO<O> retry(Predicate<Throwable>,
RetryPolicy policy);
VIO<O> repeat(Predicate<O> predicate,
RetryPolicy policy);
VIO<O> recoverWith(Lambda<Throwable, O> fn);
VIO<O> fallbackTo(Lambda<Throwable, O> fn);
VIO<O> recoverWith(Lambda<Throwable, O> fn);
}
recoverWith: it switches to an alternative lambda when a failure happens.
fallbackTo: It's like recoverWith, but if the second lambda fails too, it returns the first one error.
recover: returns a constant if the computation fails.
retry: retries the computation if an error happens. You can define a predicate to retry only the specified errors. Retry policies are created in a very declarative and composable way, for example:
import static vertx.effect.RetryPolicies.*
Delay oneHundredMillis = vertxRef.sleep(Duration.ofMillis(100));
Delay oneSec = vertxRef.sleep(Duration.ofSeconds(1));
// up to five retries waiting 100 ms
constantDelay(oneHundredMillis).append(limitRetries(5))
//during 3 seconds up to 10 times
limitRetries(10).limitRetriesByCumulativeDelay(Duration.ofSeconds(3))
//5 times without timer and then, if it keeps failing, an incremental timer from 100 ms up to 1 second
limiteRetries(5).followedBy(incrementalDelay(oneHundredMillis).capDelay(oneSec))
There are very interesting policies implemented based on this article: exponential backoff, full jitter, equal jitter, decorrelated jitter etc
repeat: When you get a not expected value (a failure) and want to repeat the computation. A predicate is specified to catch the failures. You can define any imaginable policy as well. Imagine you make a http request and you get a 500. That's not an error, it's a server failure. You can repeat the request according to a policy.
For expressions like Cond, Case, IfElse, All, Any, Pair, Triple, you can retry each value of the expression instead of the overall expresion with the methods:
VIO<O> retryEach(RetryPolicy policy);
VIO<O> retryEach(Predicate<Throwable>,
RetryPolicy policy);
In vertx-effect, a module is a special verticle whose purpose is to deploy other verticles and expose lambdas to communicate with them. Let's put an example.
import jsonvalues.JsObj;
import jsonvalues.JsStr;
import vertx.effect.VIO;
import vertx.effect.VertxModule;
import vertx.effect.Lambda;
public class MyModule extends VertxModule {
private static final String REMOVE_NULL_ADDRESS = "removeNull";
private static final String TRIM_ADDRESS = "trim";
public static Lambda<JsObj, JsObj> removeNull;
public static Lambda<JsObj, JsObj> trim;
@Override
public void deploy() {
this.deploy(REMOVE_NULL_ADDRESS,
(JsObj o) -> VIO.succeed(o.filterAllValues(pair -> pair.value.isNotNull()))
);
Function<JsValue, JsValue> trim = JsStr.prism.modify.apply(String::trim);
this.deploy(TRIM_ADDRESS,
(JsObj o) -> VIO.succeed(o.mapAllValues(pair -> trim.apply(pair.value)))
);
}
@Override
protected void initialize() {
removeNull = this.ask(REMOVE_NULL_ADDRESS);
trim = this.ask(TRIM_ADDRESS);
}
}
We usually divide modules into four main blocks:
. The addresses where the module verticles will be listening on.
. The lambdas that are exposed to the outside world to communicate with the deployed verticles.
. The `deploy` method, where the module deploys the verticles.
. The `initialize` method, where the module initializes the lambdas.
In our example, we are using the persistent and immutable Json from json-values. The ask method returns a lambda to establish bidirectional communication with a verticle. In contrast, the tell method would return a consumer because a response is either not expected or ignored. Let's deploy our module and do some testing. We usually divide modules into four main blocks:
@BeforeAll
public static void prepare(final Vertx vertx,
final VertxTestContext context)
{
VertxRef vertxRef = new VertxRef(vertx);
// prints out events published by vertx-effect
vertxRef.registerConsumer(EVENTS_ADDRESS, System.out::println);
Pair.seq(vertxRef.deployVerticle(new RegisterJsValuesCodecs()),
vertxRef.deployVerticle(new MyModule())
)
.onSuccess(pair -> {
System.out.println(String.format("Ids deployed: %s and %s",
pair._1,
pair._2
)
);
context.completeNow();
}
)
.get();
}
@Test
public void test_remove_and_then_trim(final VertxTestContext context)
{
Lambda<JsObj, JsObj> removeAndTrim = MyModule.removeNull.andThen(MyModule.trim);
JsObj input = JsObj.of("a", JsStr.of(" hi "),
"b", JsNull.NULL,
"c", JsObj.of("d", JsStr.of(" bye "),
"e", JsNull.NULL
)
);
JsObj expected = JsObj.of("a", JsStr.of("hi"),
"c", JsObj.of("d", JsStr.of("bye"))
);
removeAndTrim.apply(input)
.onSuccess(it -> {
context.verify(()-> {
Assertions.assertEquals(expected,it);
context.completeNow();
}
);
}
)
.get();
}
To send the persistent objects from json-values across the event bus, we need to register some codecs. The verticle RegisterJsValuesCodecs does this task. The VertxRef class is a wrapper around the Vertx instance to deploy and spawn verticles from lambdas. Modules use this class internally.
The VertxRef
class is a wrapper around the Vertx instance to deploy and spawn verticles from
lambdas. Modules use this class internally.
Logging is essential in software. There are many logging libraries. Sometimes it is not clear what dependencies you have to use because there isn't a standard solution. Each library uses its own. I didn't want to be opinionated. At the same time, I wanted to provide a simple and decouple solution to know what is going on in any system using vertx-effect. That's why I decided to publish remarkable events in a specific address. If you want to use your favorite slf4j implementation, just implement it in a consumer. On the other hand, consuming all those events during testing will give you instant feedback on your system and agility spotting bugs. You can disable this future with the Java system property -D"vertx.effect.enable.log.events"=false.
vertx-effect publishes events to the address vertx-effect-events. Find below some of the most important predefined events:
- VERTICLE_DEPLOYED
- VERTICLE_UNDEPLOYED
- MESSAGE_SENT
- MESSAGE_RECEIVED
- RESPONSE_REPLIED
- FAILURE_REPLIED
- RESPONSE_RECEIVED
- FAILURE_RECEIVED
- EXCEPTION_STARTING_VERTICLE
- EXCEPTION_STARTING_SHELL
- EXCEPTION_PROCESSING_MESSAGE
- EXCEPTION_UNDEPLOYING_VERTICLE
- EXCEPTION_DEPLOYING_VERTICLE
- TIMER_STARTED
- TIMER_ENDED
An example from the previous example would be:
{"event":"VERTICLE_DEPLOYED","address":"removeNull","instant":"2020-10-10T22:44:42.687633Z","id":"3de92ef8-777f-4110-aa45-442fc41900c6","thread":"vert.x-eventloop-thread-1"}
{"event":"VERTICLE_DEPLOYED","class":"vertx.effect.RegisterJsValuesCodecs","instant":"2020-10-10T22:44:42.682624Z","id":"73181043-ae38-4819-b7de-02f303fcc155","thread":"vert.x-eventloop-thread-3"}
{"event":"VERTICLE_DEPLOYED","address":"trim","instant":"2020-10-10T22:44:42.701293Z","id":"a866ffdc-38c8-4da2-bcc0-c9f4881f5139","thread":"vert.x-eventloop-thread-1"}
{"event":"VERTICLE_DEPLOYED","class":"vertx.effect.MyModule","instant":"2020-10-10T22:44:42.703410Z","id":"1473dff2-075c-4fd8-be42-cebcf0a890a0","thread":"vert.x-eventloop-thread-6"}
{"event":"MESSAGE_SENT","to":"removeNull","message":{"a":" hi ","b":null,"c":{"d":" bye ","e":null}},"instant":"2020-10-10T22:44:42.710447Z","thread":"main"}
{"event":"MESSAGE_RECEIVED","address":"removeNull","instant":"2020-10-10T22:44:42.713981Z","thread":"vert.x-eventloop-thread-4"}
{"event":"RESPONSE_REPLIED","address":"removeNull","message":{"c":{"d":" bye "},"a":" hi "},"instant":"2020-10-10T22:44:42.723013Z","thread":"vert.x-eventloop-thread-4"}
{"event":"RESPONSE_RECEIVED","from":"removeNull","instant":"2020-10-10T22:44:42.723225Z","thread":"vert.x-eventloop-thread-8"}
{"event":"MESSAGE_SENT","to":"trim","message":{"c":{"d":" bye "},"a":" hi "},"instant":"2020-10-10T22:44:42.723635Z","thread":"vert.x-eventloop-thread-8"}
{"event":"MESSAGE_RECEIVED","address":"trim","instant":"2020-10-10T22:44:42.724047Z","thread":"vert.x-eventloop-thread-5"}
{"event":"RESPONSE_REPLIED","address":"trim","message":{"a":"hi","c":{"d":"bye"}},"instant":"2020-10-10T22:44:42.728636Z","thread":"vert.x-eventloop-thread-5"}
{"event":"RESPONSE_RECEIVED","from":"trim","instant":"2020-10-10T22:44:42.728902Z","thread":"vert.x-eventloop-thread-8"}
In async event-driven systems is extremely difficult to correlate events. Having this solved is a
killer future that saves you from working hours trying to gather all the different events associated
with a specific transaction. In vertx-effect is really easy! As always, functions and composition
come to the rescue. Before checking out an example, let's see what a Lambdac
is:
import io.vertx.core.MultiMap;
public interface Lambdac<I, O> extends BiFunction<MultiMap, I, VIO<O>> {}
A Lambdac
is a function that takes two arguments, a map representing the context in which an
operation will be executed, and the message of type I sent to the verticle across the event bus. You
can put the user's email into the context to filter all the events associated with that email and a
random value to distinguish between transactions from the same email. That's only an example.
public class UserAccountModule extends VertxModule {
public static Lambdac<Integer, Boolean> isLegalAge;
public static Lambdac<String, Boolean> isValidId;
public static Lambdac<String, Boolean> isValidEmail;
public static Lambdac<JsObj, Boolean> isValid;
private static final String IS_VALID_ID = "isValidId";
private static final String IS_LEGAL_AGE = "isLegalAge";
private static final String IS_VALID_EMAIL = "isValidEmail";
private static final String IS_VALID = "isValid";
@Override
protected void deploy() {
this.deploy(IS_LEGAL_AGE, (Integer age) -> VIO.succeed(age > 16));
this.deploy(IS_VALID_ID, (String id) -> VIO.succeed(!id.isEmpty()));
this.deploy(IS_VALID_EMAIL, (String email) -> VIO.succeed(!email.isEmpty()));
Lambdac<JsObj, Boolean> isValid = (context, obj) ->
AllExp.par(isLegalAge.apply(context, obj.getInt("age")),
isValidId.apply(context, obj.getStr("id")),
isValidEmail.apply(context, obj.getStr("email"))
);
this.deploy(IS_VALID, isValid);
}
@Override
protected void initialize() {
isLegalAge = this.trace(IS_LEGAL_AGE);
isValidId = this.trace(IS_VALID_ID);
isValidEmail = this.trace(IS_VALID_EMAIL);
isValid = this.trace(IS_VALID);
}
}
As you can see, we've implemented a module that deploys five verticles and exposes five Lambdac to
interact with them. The method trace
returns a Lambdac
(in the previous example, we used the
ask
method that returns a Lambda
). The isValid
lambda is implemented using the AllExp
expression. The context is passed through all the lambdas of the AllExp
expression.
Function<JsObj, MultiMap> context=
user -> MultiMap.caseInsensitiveMultiMap()
.add("email",user.getStr("email"));
JsObj user = JsObj.of("email",JsStr.of("imrafaelmerino@gmail.com"),
"age",JsInt.of(17),
"id",JsStr.of("03786761")
);
JsObj user1=JsObj.of("email",JsStr.of("example@gmail.com"),
"age",JsInt.of(10),
"id",JsStr.of("03486761")
);
UserAccountModule.isValid
.apply(context.apply(user),
user)
.get();
UserAccountModule.isValid
.apply(context.apply(user1),
user1)
.get();
Let's take a look at the events that are published during the execution of the previous code:
[
{
"event": "MESSAGE_SENT",
"to": "isValid",
"context": {
"email": [
"example@gmail.com"
]
},
"message": {
"email": "example@gmail.com",
"age": 10,
"id": "03486761"
},
"instant": "2020-10-11T15:09:26.704145Z",
"thread": "main"
},
{
"event": "MESSAGE_RECEIVED",
"address": "isValid",
"context": {
"email": [
"example@gmail.com"
]
},
"instant": "2020-10-11T15:09:26.708157Z",
"thread": "vert.x-eventloop-thread-8"
},
{
"event": "MESSAGE_SENT",
"to": "isValid",
"context": {
"email": [
"imrafaelmerino@gmail.com"
]
},
"message": {
"email": "imrafaelmerino@gmail.com",
"age": 17,
"id": "03786761>"
},
"instant": "2020-10-11T15:09:26.708597Z",
"thread": "main"
},
{
"event": "MESSAGE_SENT",
"to": "isLegalAge",
"context": {
"email": [
"example@gmail.com"
]
},
"message": 10,
"instant": "2020-10-11T15:09:26.709568Z",
"thread": "vert.x-eventloop-thread-8"
},
{
"event": "MESSAGE_RECEIVED",
"address": "isLegalAge",
"context": {
"email": [
"example@gmail.com"
]
},
"instant": "2020-10-11T15:09:26.710185Z",
"thread": "vert.x-eventloop-thread-4"
},
{
"event": "MESSAGE_SENT",
"to": "isValidId",
"context": {
"email": [
"example@gmail.com"
]
},
"message": "03486761",
"instant": "2020-10-11T15:09:26.710136Z",
"thread": "vert.x-eventloop-thread-8"
},
{
"event": "MESSAGE_SENT",
"to": "isValidEmail",
"context": {
"email": [
"example@gmail.com"
]
},
"message": "example@gmail.com",
"instant": "2020-10-11T15:09:26.710672Z",
"thread": "vert.x-eventloop-thread-8"
},
{
"event": "MESSAGE_RECEIVED",
"address": "isValidId",
"context": {
"email": [
"example@gmail.com"
]
},
"instant": "2020-10-11T15:09:26.710713Z",
"thread": "vert.x-eventloop-thread-5"
},
{
"event": "MESSAGE_RECEIVED",
"address": "isValidEmail",
"context": {
"email": [
"example@gmail.com"
]
},
"instant": "2020-10-11T15:09:26.711165Z",
"thread": "vert.x-eventloop-thread-6"
},
{
"event": "MESSAGE_RECEIVED",
"address": "isValid",
"context": {
"email": [
"imrafaelmerino@gmail.com"
]
},
"instant": "2020-10-11T15:09:26.711854Z",
"thread": "vert.x-eventloop-thread-8"
}
{
"event": "MESSAGE_SENT",
"to": "isLegalAge",
"context": {
"email": [
"imrafaelmerino@gmail.com"
]
},
"message": 17,
"instant": "2020-10-11T15:09:26.712138Z",
"thread": "vert.x-eventloop-thread-8"
}
]
With vertx-effect, you can spawn verticles, which means that verticles are deployed and undeployed on the fly. Every time something needs to be computed, a new verticle is deployed. When the computation is done and the verticle replies, it is undeployed right away. The goal is to get the most out of the cores! Erlang taught us how to develop concurrent software that doubles in speed if you double the number of cores without changing a code line: spawning as many verticles as possible. In Erlang jargon, a verticle is kind of a process.
Will deploy and undeploy verticles continuously slow down the system? It depends, like everything related to performance. There are times when the cost of reaching a greater level of parallelization is worth it. Other times it's not. Let's see how long it takes to deploy and undeploy one million verticles:
@Benchmark
@BenchmarkMode(Mode.AverageTime)
public void deploy_undeploy()throws InterruptedException{
int processes = 1000000;
CountDownLatch latch = new CountDownLatch(processes);
for(int i=0; i<processes; i++) {
vertxRef.deploy("id"+i,
Lambda.<JsObj>identity()
)
.onComplete( vr -> {
vr.result()
.undeploy()
.onSuccess(it->latch.countDown());
}
)
.get();
}
latch.await(10,SECONDS);
}
It takes almost three seconds, 3 microseconds per verticle:
Benchmark Mode Cnt Score Error Units
Processes.deploy_undeploy avgt 10 2.907 ± 0.658 s/op
Here's a comprehensive example demonstrating the effortless creation of an HTTP server, deployment of a handler using stubs, creation of an HTTP client module, and the sending of both GET and POST requests. Requesting data is simplified to the extent that it merely involves invoking lambdas that return HTTP responses encapsulated in JsObj.
@ExtendWith(VertxExtension.class)
public class HttpClientMethodsTests {
private static final int PORT = Port.number.incrementAndGet();
static HttpClientModule httpClient;
@BeforeAll
public static void prepare(final Vertx vertx,
final VertxTestContext context
) {
VertxRef vertxRef = new VertxRef(vertx);
vertxRef.registerConsumer(VertxRef.EVENTS_ADDRESS,
System.out::println
);
httpClient = new HttpClientModule(new HttpClientOptions().setDefaultHost("0.0.0.0"),
"myhttp-client");
HttpRespStub mockReqResp =
HttpRespStub.when(ALWAYS)
.setBodyResp(n -> body -> req -> JsObj.of("req_method",
JsStr.of(req.method()
.name()
),
"req_body",
JsStr.of(body.toString()),
"req_uri",
JsStr.of(req.uri())
)
.toPrettyString()
)
.setHeadersResp(HttpHeadersRespStub.JSON_CONTENT_TYPE);
MapExp.seq("json-values-codecs",
vertxRef.deployVerticle(new RegisterJsValuesCodecs()),
"http-server",
new HttpServerBuilder(vertx,
new HttpReqHandlerStub(mockReqResp)
).create(PORT),
"http-client",
vertxRef.deployVerticle(httpClient)
)
.get()
.onComplete(Verifiers.pipeTo(context));
}
@Test
public void testGet(VertxTestContext context) {
VIO<JsObj> getReq = httpClient.get.apply(HttpHeaders.headers()
.set("method",
"get"
),
new GetReq().port(PORT)
.uri("example")
);
Verifiers.<JsObj>verifySuccess(resp -> {
int status = HttpResp.STATUS_CODE_LENS.get.apply(resp);
String bodyResp = HttpResp.STR_BODY_LENS.get.apply(resp);
JsObj bodyJsObj = JsObj.parse(bodyResp);
return bodyJsObj.getStr("req_method")
.equals("GET")
&& bodyJsObj.getStr("req_uri")
.equals("example")
&& bodyJsObj.getStr("req_body").isEmpty()
&& status == 200;
})
.accept(getReq,
context
);
}
@Test
public void testPost(VertxTestContext context) {
VIO<JsObj> postReq = httpClient.post.apply(HttpHeaders.headers()
.set("method",
"post"
),
new PostReq("hi".getBytes())
.port(PORT)
.uri("example")
);
Verifiers.<JsObj>verifySuccess(resp -> {
Integer status = HttpResp.STATUS_CODE_LENS.get.apply(resp);
String bodyResp = HttpResp.STR_BODY_LENS.get.apply(resp);
JsObj bodyJsObj = JsObj.parse(bodyResp);
return bodyJsObj.getStr("req_method")
.equals("POST")
&& bodyJsObj.getStr("req_uri")
.equals("example")
&& bodyJsObj.getStr("req_body")
.equals("hi")
&& status == 200;
})
.accept(postReq,
context
);
}
}
You can harness the power of the VIO
API to make requests with retry policies, as illustrated in
the following example:
@ExtendWith(VertxExtension.class)
public class HttpClientTestRetryOnFailure {
private static final int PORT = Port.number.incrementAndGet();
static HttpClientModule httpClient;
static VertxRef vertxRef;
static HttpReqHandlerStub httpReqHandlerStub;
@BeforeAll
public static void prepare(final Vertx vertx,
final VertxTestContext context
) {
vertxRef = new VertxRef(vertx);
vertxRef.registerConsumer(VertxRef.EVENTS_ADDRESS,
System.out::println
);
httpClient = new HttpClientModule(new HttpClientOptions().setDefaultHost("0.0.0.0"),
"myhttp-client");
HttpRespStub mockReqErrorResp =
HttpRespStub.when((n, req) -> n <= 3)
.setStatusCodeResp(n -> body -> req -> 500)
.setBodyResp(n -> body -> req -> "{}")
.setHeadersResp(HttpHeadersRespStub.JSON_CONTENT_TYPE);
HttpRespStub mockReqErrorSuccess =
HttpRespStub.when((n, req) -> n > 3)
.setStatusCodeResp(n -> body -> req -> 200)
.setBodyResp(n -> body -> req -> "{}")
.setHeadersResp(HttpHeadersRespStub.JSON_CONTENT_TYPE);
httpReqHandlerStub = new HttpReqHandlerStub(mockReqErrorResp,
mockReqErrorSuccess
);
TripleExp.seq(vertxRef.deployVerticle(new RegisterJsValuesCodecs()),
new HttpServerBuilder(vertx,
httpReqHandlerStub
).create(PORT),
vertxRef.deployVerticle(httpClient)
)
.get()
.onComplete(Verifiers.pipeTo(context));
}
@Test
public void test_retries(VertxTestContext context) {
Verifiers.<JsObj>verifySuccess(resp -> {
Integer status = HttpResp.STATUS_CODE_LENS.get.apply(resp);
return status == 200;
})
.accept(httpClient.get.apply(new GetReq().port(PORT)
.uri("example")
)
.repeat(resp -> HttpResp.STATUS_CODE_LENS.get.apply(resp) == 500,
limitRetries(3)
),
context
);
}
@Test
public void test_retries_constant_delay(VertxTestContext context) {
httpReqHandlerStub.resetCounter();
long tic = Instant.now()
.toEpochMilli();
VIO<JsObj> getReq =
httpClient.get.apply(new GetReq().port(PORT)
.uri("example")
)
.repeat(resp -> HttpResp.STATUS_CODE_LENS.get.apply(resp) == 500,
limitRetries(3).append(constantDelay(vertxRef.delay(Duration.ofMillis(100))))
);
Verifiers.<JsObj>verifySuccess(resp -> {
long elapsed = Instant.now()
.toEpochMilli() - tic;
int status = HttpResp.STATUS_CODE_LENS.get.apply(resp);
System.out.println(elapsed);
return status == 200 && elapsed >= 300;
}).accept(getReq,
context
);
}
}
Creating an HTTP client with OAuth client credentials support is made exceptionally straightforward, liberating you from the intricacies of obtaining and refreshing tokens. The provided code showcases how to easily set up a resilient HTTP client using the VIO API, complete with token retrieval and automatic refresh. This not only streamlines the process but also enables you to seamlessly integrate retry policies and other reliability features.
@ExtendWith(VertxExtension.class)
public class ClientCredentialsModuleTest {
static ClientCredentialsModule httpClient;
static ClientCredentialsModuleBuilder builder;
static VertxRef vertxRef;
static int port = Port.number.incrementAndGet();
@BeforeAll
public static void prepare(final Vertx vertx,
final VertxTestContext context
) {
builder =
new ClientCredentialsModuleBuilder(new HttpClientOptions().setDefaultPort(port)
.setDefaultHost("0.0.0.0"),
"my-httpclient",
new AccessTokenRequest("client_id",
"client_secret"
));
httpClient = builder.createModule();
vertxRef = new VertxRef(vertx);
vertxRef.registerConsumer(VertxRef.EVENTS_ADDRESS,
System.out::println
);
PairExp.seq(vertxRef.deployVerticle(new RegisterJsValuesCodecs()),
vertxRef.deployVerticle(httpClient)
)
.onComplete(Verifiers.pipeTo(context))
.get();
}
@Test
public void test_get_success_after_three_retries_getting_token(Vertx vertx,
VertxTestContext context
) {
builder.setAccessTokenReqRetryPolicy(e -> true,
RetryPolicies.limitRetries(3)
);
List<HttpRespStub> httpRespStubs =
List.of(when(REQ_LET.apply(3))
.setBodyResp(HttpBodyRespStub.cons(JsObj.of("token_found",
FALSE
)
)
)
.setStatusCodeResp(HttpStatusCodeRespStub._401)
.setHeadersResp(HttpHeadersRespStub.JSON_CONTENT_TYPE),
when(FORTH_REQ)
.setBodyResp(HttpBodyRespStub.cons(JsObj.of("token_found",
TRUE,
"access_token",
JsStr.of("foooo")
)
)
)
.setStatusCodeResp(HttpStatusCodeRespStub._200)
.setHeadersResp(HttpHeadersRespStub.JSON_CONTENT_TYPE),
when(REQ_GT.apply(4))
.setBodyResp(HttpBodyRespStub.cons(JsObj.of("name",
JsStr.of("Rafael")
))
)
.setStatusCodeResp(HttpStatusCodeRespStub._200)
.setHeadersResp(HttpHeadersRespStub.JSON_CONTENT_TYPE));
VIO<JsObj> getReq = httpClient.getOauth.apply(new GetReq().uri("/name"));
new HttpServerBuilder(vertx,
new HttpReqHandlerStub(httpRespStubs
)
).create(port)
.get()
.onSuccess(server -> {
Verifiers.<JsObj>verifySuccess(resp -> HttpResp.STATUS_CODE_LENS.get.apply(resp) == 200)
.accept(getReq,
context
);
});
}
@Test
public void test_get_success_after_three_retries(Vertx vertx,
VertxTestContext context
) {
List<HttpRespStub> httpRespStubs =
List.of(when(REQ_LET.apply(3))
.setBodyResp(HttpBodyRespStub.cons(JsObj.of("token_found",
FALSE
)
)
)
.setStatusCodeResp(HttpStatusCodeRespStub._401),
when(FORTH_REQ)
.setBodyResp(HttpBodyRespStub.cons(JsObj.of("token_found",
TRUE,
"access_token",
JsStr.of("foooo")
)
)
)
.setStatusCodeResp(HttpStatusCodeRespStub._200),
when(REQ_LET.apply(7))
.setBodyResp(c -> body -> req -> {
req.response().close();
return "{}";
}
)
.setStatusCodeResp(HttpStatusCodeRespStub._500),
when(REQ_GT.apply(7))
.setBodyResp(HttpBodyRespStub.cons(JsObj.of("name",
JsStr.of("Rafael")
))
)
.setStatusCodeResp(HttpStatusCodeRespStub._200));
VIO<JsObj> getReq = httpClient.getOauth.apply(new GetReq().uri("/name"))
.retry(RetryPolicies.limitRetries(3));
new HttpServerBuilder(vertx,
new HttpReqHandlerStub(httpRespStubs)
).create(port)
.get()
.onSuccess(server -> {
Verifiers.<JsObj>verifySuccess(resp -> HttpResp.STATUS_CODE_LENS.get.apply(resp) == 200)
.accept(getReq,
context
);
});
}
}
TO be documented but implemented!
TO be documented but implemented!
TO be documented but implemented!
Java 17 or greater
<dependency>
<groupId>com.github.imrafaelmerino</groupId>
<artifactId>vertx-effect</artifactId>
<version>4.0.0</version>
</dependency>
Java 21 or greater
<dependency>
<groupId>com.github.imrafaelmerino</groupId>
<artifactId>vertx-effect</artifactId>
<version>5.0.0</version>
</dependency>