Skip to content

Reference implementations of popular deep learning models.

License

Notifications You must be signed in to change notification settings

indranaut/keras-applications

 
 

Repository files navigation

Keras Applications

Build Status

Keras Applications is the applications module of the Keras deep learning library. It provides model definitions and pre-trained weights for a number of popular archictures, such as VGG16, ResNet50, Xception, MobileNet, and more.

Read the documentation at: https://keras.io/applications/

Keras Applications may be imported directly from an up-to-date installation of Keras:

from keras import applications

Keras Applications is compatible with Python 2.7-3.6 and is distributed under the MIT license.

Performance

  • The top-k errors were obtained using Keras Applications with the TensorFlow backend on the 2012 ILSVRC ImageNet validation set and may slightly differ from the original ones. The input size used was 224x224 for all models except NASNetLarge (331x331), InceptionV3 (299x299), InceptionResNetV2 (299x299), Xception (299x299), EfficientNet-B1 (240x240), EfficientNet-B2 (260x260), EfficientNet-B3 (300x300), EfficientNet-B4 (380x380), EfficientNet-B5 (456x456), EfficientNet-B6 (528x528), and EfficientNet-B7 (600x600).
    • Top-1: single center crop, top-1 error
    • Top-5: single center crop, top-5 error
    • 10-5: ten crops (1 center + 4 corners and those mirrored ones), top-5 error
    • Size: rounded the number of parameters when include_top=True
    • Stem: rounded the number of parameters when include_top=False
Top-1 Top-5 10-5 Size Stem References
VGG16 28.732 9.950 8.834 138.4M 14.7M [paper] [tf-models]
VGG19 28.744 10.012 8.774 143.7M 20.0M [paper] [tf-models]
ResNet50 25.072 7.940 6.828 25.6M 23.6M [paper] [tf-models] [torch] [caffe]
ResNet101 23.580 7.214 6.092 44.7M 42.7M [paper] [tf-models] [torch] [caffe]
ResNet152 23.396 6.882 5.908 60.4M 58.4M [paper] [tf-models] [torch] [caffe]
ResNet50V2 24.040 6.966 5.896 25.6M 23.6M [paper] [tf-models] [torch]
ResNet101V2 22.766 6.184 5.158 44.7M 42.6M [paper] [tf-models] [torch]
ResNet152V2 21.968 5.838 4.900 60.4M 58.3M [paper] [tf-models] [torch]
ResNeXt50 22.260 6.190 5.410 25.1M 23.0M [paper] [torch]
ResNeXt101 21.270 5.706 4.842 44.3M 42.3M [paper] [torch]
InceptionV3 22.102 6.280 5.038 23.9M 21.8M [paper] [tf-models]
InceptionResNetV2 19.744 4.748 3.962 55.9M 54.3M [paper] [tf-models]
Xception 20.994 5.548 4.738 22.9M 20.9M [paper]
MobileNet(alpha=0.25) 48.418 24.208 21.196 0.5M 0.2M [paper] [tf-models]
MobileNet(alpha=0.50) 35.708 14.376 12.180 1.3M 0.8M [paper] [tf-models]
MobileNet(alpha=0.75) 31.588 11.758 9.878 2.6M 1.8M [paper] [tf-models]
MobileNet(alpha=1.0) 29.576 10.496 8.774 4.3M 3.2M [paper] [tf-models]
MobileNetV2(alpha=0.35) 39.914 17.568 15.422 1.7M 0.4M [paper] [tf-models]
MobileNetV2(alpha=0.50) 34.806 13.938 11.976 2.0M 0.7M [paper] [tf-models]
MobileNetV2(alpha=0.75) 30.468 10.824 9.188 2.7M 1.4M [paper] [tf-models]
MobileNetV2(alpha=1.0) 28.664 9.858 8.322 3.5M 2.3M [paper] [tf-models]
MobileNetV2(alpha=1.3) 25.320 7.878 6.728 5.4M 3.8M [paper] [tf-models]
MobileNetV2(alpha=1.4) 24.770 7.578 6.518 6.2M 4.4M [paper] [tf-models]
DenseNet121 25.028 7.742 6.522 8.1M 7.0M [paper] [torch]
DenseNet169 23.824 6.824 5.860 14.3M 12.6M [paper] [torch]
DenseNet201 22.680 6.380 5.466 20.2M 18.3M [paper] [torch]
NASNetLarge 17.502 3.996 3.412 93.5M 84.9M [paper] [tf-models]
NASNetMobile 25.634 8.146 6.758 7.7M 4.3M [paper] [tf-models]
EfficientNet-B0 22.810 6.508 5.858 5.3M 4.0M [paper] [tf-tpu]
EfficientNet-B1 20.866 5.552 5.050 7.9M 6.6M [paper] [tf-tpu]
EfficientNet-B2 19.820 5.054 4.538 9.2M 7.8M [paper] [tf-tpu]
EfficientNet-B3 18.422 4.324 3.902 12.3M 10.8M [paper] [tf-tpu]
EfficientNet-B4 17.040 3.740 3.344 19.5M 17.7M [paper] [tf-tpu]
EfficientNet-B5 16.298 3.290 3.114 30.6M 28.5M [paper] [tf-tpu]
EfficientNet-B6 15.918 3.102 2.916 43.3M 41.0M [paper] [tf-tpu]
EfficientNet-B7 15.570 3.160 2.906 66.7M 64.1M [paper] [tf-tpu]

Reference implementations from the community

Object detection and segmentation

Sequence learning

Reinforcement learning

Generative adversarial networks

About

Reference implementations of popular deep learning models.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%